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HU Knew? Bacillus subtilis HBsu Is Required for DNA Replication

Initiation
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ABSTRACT The prokaryotic nucleoid-associated protein (NAP) HU is both highly conserved
and ubiquitous. Deletion of HU causes pleiotropic phenotypes, making it difficult to uncover
the critical functions of HU within a bacterial cell. In their recent work, Karaboja and Wang
(J Bacteriol 204:200119-22, 2022, https://doi.org/10.1128/JB.00119-22) show that one essential
function of Bacillus subtilis HU (HBsu) is to drive the DnaA-dependent initiation of DNA
replication at the chromosome origin. We discuss the possible roles of HBsu in replication
initiation and other essential cellular functions.
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HU IS REQUIRED FOR CELL VIABILITY ACROSS THE BACTERIAL DOMAIN
rokaryotic nucleoid-associated proteins (NAPs) are a diverse class of DNA-binding
proteins spatially organizing DNA through wrapping, bending, or bridging. NAPs

are globally involved in compacting and structuring the bacterial chromosome and regulating

DNA topology (1). While the DNA-structuring activities of NAPs have been a major focus

of attention, it is less clear how these activities translate into the many functions that NAPs

fulfill within a bacterial cell (see below).

The protein HU is an abundant NAP that is highly conserved throughout the bacterial
domain (2, 3). In some species such as the proteobacteria Escherichia coli and Caulobacter
crescentus, HU is encoded by two closely related genes and can thus assemble into homo-
and heterodimers, while in others like the actinomycete Mycobacterium smegmatis and the fir-
micute Bacillus subtilis, HU is encoded by a single gene and occurs exclusively as a homodimer.
Removing or impairing HU activity in vivo is generally detrimental, causes strongly reduced via-
bility in E. coli, and is lethal in B. subtilis. E. coli cells lacking HU show defects affecting growth,
metabolic gene expression, lysogeny, transposition, cell division, resistance against DNA dam-
age, and DNA supercoiling (4-8). In the absence of HU, E. coli frequently produces anucleate
cells, indicating defects in chromosome duplication or segregation (6). Additionally, a recent
study in Mycobacterium smegmatis showed that the loss of HU causes delayed DNA replica-
tion initiation, suggesting a role of HU homologs in DNA replication initiation (9). Critically,
however, the pleiotropic phenotypes associated with HU mutants have obfuscated attempts
to ascertain its essential function(s) within the bacterial cell.

The B. subtilis HU homolog, termed HBsu and encoded by the single gene hbs, is the only
known major NAP in this organism (10). HBsu appears to have a DNA architectural function
similar to that of E. coli HU (11-13), and cells harboring low levels or defective variants of HBsu
display an array of phenotypes, including a classical sporulation defect (14-16). While these
previous studies have pointed toward important functions of HBsu in vivo, the essentiality of
HBsu made it challenging to pinpoint its most critical activities.

HBsu IS DIRECTLY INVOLVED IN DNA REPLICATION INITIATION IN BACILLUS SUBTILIS

Using two independent methods for rapidly depleting HBsu from the cell, Karaboja and
Wang (17) have recently shown that HBsu is directly involved in DNA replication initiation at
the chromosomal origin of B. subtilis. By tracking fluorescently labeled chromosomal origins
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and performing genome-wide marker frequency analyses, Karaboja and Wang authors show
that chromosomal replication initiation is quickly halted upon the depletion of HBsu, phenoco-
pying the depletion of the essential replication initiation protein DnaB. This is an exciting find-
ing since a role of HU homologs in DNA replication initiation has been proposed for several
bacteria based on knockout phenotypes and in vitro studies (6, 9, 18) but until now was
unknown for firmicutes like B. subtilis. Importantly, Karaboja and Wang show that HBsu activity
is specifically required for replication initiation at the native chromosomal origin, which
depends on the master bacterial DNA replication initiator DnaA (17). Cells initiating replication
from an artificially introduced plasmid origin, oriN, which requires the heterologous initiator
RepN and is independent of DnaA (19, 20), are not blocked for DNA replication. This finding
opens important questions regarding the function of HBsu in DNA replication initiation and
why HBsu essentiality is specific to the DnaA-dependent chromosome origin (oriC).

HBsu AS PART OF THE INITIATION COMPLEX AND A POSSIBLE ROLE IN DNA
LOOPING AT THE ORIGIN?

The role of HU in DNA replication initiation has been most studied in E. coli, where it pro-
motes the unwinding of the E. coli origin in vitro (18). Further in vitro studies showed that HU
directly interacts with DnaA to stabilize DnaA binding at the origin (21), and it was suggested
that HU might be specifically incorporated into a DnaA-origin complex (22). It is important to
note that HU is not the only NAP stimulating DNA replication initiation in E. coli. The E. coli
origin harbors several binding sites for the protein factor for inversion stimulation (Fis), a
NAP initially thought to inhibit DNA replication initiation based on in vitro results (23, 24)
but later shown to stimulate replication initiation in vivo under rapid-growth-promoting
conditions (25). Additionally, the integration host factor (IHF) binds to a single specific site in
the E. coli origin. IHF is a distant homolog of HU that introduces a sharp bend of >120° into
double-stranded DNA (1, 26) and promotes replication initiation in vitro and in vivo (18, 27, 28).
IHF is not essential for replication initiation in E. coli, but control over replication timing is lost
upon its deletion (22). Importantly, the combined deletion of HU and IHF produces a strong
growth defect in E. coli, suggesting that these NAPs have at least partially redundant functions
(27). The essential role of HBsu in DnaA-dependent oriC activity in B. subtilis is consistent with
NAPs being generally involved in DNA replication initiation. Critically, however, binding of
HBsu to the B. subtilis chromosomal origin has not yet been shown, nor is HBsu a known inter-
action partner of DnaA (29). Future investigations might specifically test for HBsu recruitment
to the origin and its relationship to DnaA activity.

While HU has a mode of action on DNA different from that of IHF (1), its activity in modu-
lating DNA flexibility could play an important role in B. subtilis origin topology. In vitro, HU pro-
teins can alter the persistence length of the DNA double helix (30, 31), and in E. coli, HU facili-
tates the formation of repression loops between two lacO sites via the repressor Lacl (32).
It has been suggested that DnaA molecules recruited between 50 and 100 bp upstream of
the unwinding site of the B. subtilis origin are delivered to the latter via a DNA loop (33).
Furthermore, B. subtilis and other firmicutes as well as some epsilonproteobacteria have
been suggested to possess bipartite origins of replication in which the origin consists of
two clusters of DnaA-binding sites that are separated by the ~1,300-bp-long dnaA gene. In
vitro, upon the binding of DnaA to the separate clusters, these can join while looping out the
dnaA coding region (34-36). It is currently unknown whether looping between DnaA-binding-
site clusters in bipartite origins takes place or is essential for chromosomal replication initiation
in vivo. It is possible that in B. subtilis, HBsu plays a role in stabilizing DNA loops formed within
the chromosomal origin. Such structures could facilitate the delivery of DnaA and other ini-
tiation proteins between regions of oriC, or they could promote an architecture of the DNA
polymer more labile to unwinding (37).

DOES HBsu AFFECT DnaA-CHROMOSOMAL ORIGIN-DEPENDENT DNA REPLICATION
INITIATION VIA ACTING ON SUPERCOILED DNA?

In addition to stabilizing DNA loops, HU homologs influence DNA superhelicity (38).
In vitro, HU forms multimers around which DNA can be wrapped, leading to restrained
negative DNA supercoiling (39). Negative supercoiling is a requirement for bacterial origin
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unwinding in vitro (40) and in vivo (41, 42). In E. coli, the introduction of negative supercoil-
ing into the chromosomal origin via the transcription of flanking genes promotes replication
initiation (41). Similarly, negative supercoiling is also important for initiation at the chromo-
somal origin of B. subtilis in vivo. A global reduction in negative supercoiling through inhibi-
tion of gyrase restricts the recruitment of DnaA to the chromosomal origin and inhibits DNA
replication initiation (42). Importantly, in E. coli, mutations that suppress the loss of HU are
frequently found in a gyrase-encoding gene, suggesting a functional link between HU activ-
ity and negative supercoiling in vivo (43). It is intriguing that, similar to the HBsu depletion
phenotype recently reported by Karaboja and Wang (17), gyrase inactivation blocked DnaA-
dependent DNA replication initiation at oriC, while the plasmid-derived origin oriN was
much less affected (42). Because RepN-oriN requires the same downstream replication initia-
tion proteins, DnaD and DnaB, as does DnaA-oriC (44), the sensitivity of oriC to both HBsu
depletion and changes in supercoiling might reflect critical differences in the architecture
and/or initiation mechanism between the two replication initiation systems.

WHAT ARE OTHER ESSENTIAL FUNCTIONS OF HBsu IN VIVO?

While Karaboja and Wang have shown that HBsu plays an essential role in DnaA-depend-
ent DNA replication initiation, they also found that restoring initiation via oriN is not sufficient
for B. subtilis viability in the absence of HBsu (17). Therefore, HBsu must perform at least one
other essential function in the cell.

One property of HU homologs to consider is their ability to bind a wide range of nucleic
acid polymers (45-49). E. coli HU binds specifically and with high affinity to nucleic acid struc-
tures associated with DNA replication, recombination, and repair (e.g., nicked or gapped DNA
and DNA-RNA hybrids, DNA invasions, and DNA forks) (45-49). Using nonlethal alleles, previ-
ous work showed that HBsu plays important roles in DNA repair, homologous recombination,
and B-protein-mediated site-specific recombination (16). As a consequence, HBsu-defective
B. subtilis cells are extremely sensitive to DNA-damaging agents, a phenotype akin to that
observed for E. coli strains lacking HU (4, 8). It is not yet clear whether HBsu's involvement in
DNA repair and recombination is essential for viability under standard laboratory conditions.
The observed cell elongation phenotype of HBsu-deficient B. subtilis may be due to the acti-
vation of the DNA damage response, which is known to inhibit cytokinesis. This model pre-
dicts that (i) conditions dampening replication and repair stress might compensate for the
loss of HBsu and (ii) one of the DNA damage responses in B. subtilis (LexA or DnaA dependent)
is being activated following the depletion of HBsu.

It is also plausible that HBsu fulfills one or several essential functions in gene expression.
Many NAPs are wide-ranging transcriptional regulators that positively or negatively affect
gene expression (1, 3). In E. coli, HU regulates 8% of the genome, including genes respond-
ing to SOS induction, high osmolarity, acid stress, and anaerobic growth (7). The regulation
of these genes is thought to occur through two mechanisms: (i) constraining of superhelical
DNA, such as for operons responding to hyperosmolarity, and (i) DNA loop stabilization,
which promotes or inhibits the binding of the transcription factors LexA, GadX, and FNR. In
addition to affecting gene expression at the level of transcription, HU is also involved in reg-
ulating translation. HU interacts with RNA in vitro (49), and in E. coli, HU binds to the mRNA
encoding the alternative sigma factor o° (encoded by rpoS), enhancing translation in vitro
and the expression of o> in vivo. Moreover, HU was also shown to bind to the small RNA
(SRNA) DsrA in vitro (49), a positive regulator of o> expression (50). In B. subtilis, HBsu interacts
with small cytoplasmic RNA (scRNA), a component of the signal recognition particle involved
in protein secretion (51). It remains to be investigated whether HBsu plays a general role in
translation through interaction with mRNAs and/or regulatory sSRNAs. Although the regulon of
HBsu in B. subtilis has not yet been determined, a plausible model is that misregulation of tran-
scription and/or translation of one or several genes/operons in the absence of HBsu contrib-
utes to lethality. Future work investigating HU enrichment at chromosomal sites via chromatin
immunoprecipitation sequencing (ChIP-Seq), as well as transcriptome sequencing (RNA-Seq)
and proteomics in the presence and absence of HBsu, is needed to identify transcriptional and
translational regulatory functions of HBsu.
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Through their roles in regulating DNA topology and gene expression, NAPs have been
suggested to contribute to overall chromosome architecture and compaction albeit to vari-
ous degrees depending on the NAP and the bacterial species (1, 52). Highly transcribed
genes set supercoil diffusion barriers, leading to the organization of bacterial chromosomes
into dozens of isolated chromosomal interaction domains of 30 to 420 kbp (53-56), which
themselves are further demarcated into subregions that display a high level of self-interac-
tion (52, 53, 56). The loss of HU in C. crescentus does not strongly affect the chromosomal
domain boundaries, but short-range interactions between chromosomal sites up to 100
kbp apart are significantly reduced, suggesting a role of HU in packing and stabilizing DNA
plectonemes (53). Conversely, in E. coli, the loss of HU activity disrupts DNA interactions
occurring between chromosomal sites up to a megabase apart, implying a role of HU in
the macrodomain organization of the E. coli chromosome (56). Although intrachromosomal
interactions have been studied in B. subtilis (55, 57, 58), the impact of HBsu deletion on chro-
mosome structure has not yet been investigated. The improper spatial organization of the B.
subtilis chromosome upon the depletion of HBsu could hamper structural separation between
sister chromosomes and negatively affect chromosome segregation. Analysis of chromosome
conformation (e.g. Hi-C) during different stages of HBsu depletion using the strains con-
structed by Karaboja and Wang will be critical for understanding the potential role of HBsu in
B. subtilis chromosome organization.

CONCLUDING REMARKS
The work by Karaboja and Wang on HBsu (17) has added an exciting new component
to the process of DNA replication initiation in B. subtilis. Investigating the potential roles of
HBsu in origin loop formation, superhelicity, and binding oriC initiation complexes will be
key to developing a comprehensive understanding of bacterial DNA replication initiation.
Furthermore, investigations of HBsu's other essential function(s) will likely unveil new perspec-
tives on the importance of NAPs in bacterial cell biology.
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