Supplemental Information For

SMC translocation is unaffected by an excess of nucleoid associated proteins

in vivo

Zhongqing Ren, Lindsey E. Way, and Xindan Wang

This PDF file includes:

Figures S1 and S2 Tables S1 to S4 Supplementary Uncropped Gels SI References

Figure S1. mCherry tag does not affect H-NS function.

(a-d) ChIP-seq results of indicated strains. The x-axis shows genome positions, and the y-axis indicates ChIP enrichment (ChIP/input). Sequencing reads from ChIP and input samples were normalized to the total number of reads before plotting. Left panel: ChIP-seq profiles of the whole genome in 1-kb bins. Middle and right panels: High-resolution plots of a 100-kb region (3150-3150 kb) and a 10-kb region (3070-3080 kb), both of which were plotted in 100-bp bins. (a) Anti-mCherry ChIP-seq on H-NS-mCherry (BWX5256). H-NS-mCherry expression was induced using 0.5% xylose for 90 min. (b) Anti-Rok ChIP-seq on WT *B. subtilis* PY79. (c) Anti-H-NS ChIP-seq on WT *B. subtilis* PY79, which did not express the H-NS protein. (d) Anti-H-NS ChIP-seq on *B. subtilis* PY79 expressing H-NS (BWX5864). H-NS expression was induced using 0.5% xylose for 90 min. (e) Log₂ ratio plots comparing different Hi-C matrices. Log₂(matrix 1/matrix 2) was calculated and plotted in the heatmaps. Identities of matrix 1/ matrix 2 are shown at the top of each plot. The color scale is shown at the right of panel (e). (f) Contact probability decay Pc(s) curves of H-NS-mCherry (BWX5490) and H-NS (BWX5864). Two biological replicates of each strain were analyzed.

Figure S2. Exogenous DNA-binding proteins localize to the nucleoid.

(a) Fluorescence microscopy of *B. subtilis* expressing the indicated proteins in the strains that were used to measure SMC translocation rates in **Figure 4**. The HupA-mCherry/HupB heterodimer (BWX5602), the HMfA-mCherry/HMfB heterodimer (BWX5603), and H-NS-mCherry (BWX5663) were induced with 0.5% xylose for 90 min. The scale bar represents 4 µm. (b) Comparison of fluorescence intensity. Fluorescence intensities of the HupA-mCherry/HupB heterodimer (BWX5603), and H-NS-mCherry (BWX5602), the HMfA-mCherry/HMfB heterodimer (BWX5603), and H-NS-mCherry (BWX5602), the HMfA-mCherry/HMfB heterodimer (BWX5600 and BWX5603), and H-NS-mCherry (BWX5256 and BWX5663) were quantified. BWX5598, BWX5600 and BWX5256 were used in Figure 1; BWX5602, BWX5603 and BWX5663 were used in Figure 4. Red writing indicates the proteins that are tagged with mCherry. The mean pixel intensities were plotted as histograms. Error bars indicate the standard deviation of pixel intensity.

Table S1. Strains used in this study

Strain	Genotype	Reference	Figures
BWX523	sacA::hbsu-mcherry Kan	This study	1bcd, 2b
BWX5269	yhdG::Pxyl hupA-mcherry phleo	This study	1bcd, 2c
BWX5271	yhdG::Pxyl hupB-mcherry phleo	This study	1bcd, 2d
BWX5598	yhdG::Pxyl hupA-mcherry phleo, yuxG::Pxyl hupB erm	This study	1bcd, 2e,
		,	S2b
BWX5256	vhdG::Pxvl hns-mcherry phleo	This study	1bcd, 2f,
		, ,	S1a, S2b
BWX5427	vhdG::Pxvl hmfA-mcherrv phleo	This study	1bcd. 2a
BWX5429	vhdG::Pxvl hmfB-mcherry phleo	This study	1bcd, 2h
BWX5600	vhdG::Pxvl hmfA-mcherry phleo. vuxG::Pxvl hmfB erm	This study	1bcd, 2i, S2b
BWX5560	vhdG::Pxvl mcherry phleo	This study	1c
BWX5947	vhdG::Pxvl nbhmfA-mcherry phleo	This study	1c
BWX5949	vhdG::Pxvl nbhmfB-mcherry phleo	This study	1c
PY79	wild-type	<u>1</u>	2a, S1bc
BWX5492	parS Λ 9 no a.b., -1° parS no a.b., vhdG::Pxvl hupA-mcherry	This study	3a
211/10/102	phieo	The etday	04
BWX5494	parS Λ 9 no a.b., -1° parS no a.b., vhdG::PxvI hupB-mcherry	This study	3a
	phieo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BWX5496	parS Λ 9 no a.b., -1° parS no a.b., vhdG::Pxvl hmfA-	This study	3a
	mcherry phleo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BWX5498	parS Λ 9 no a.b., -1° parS no a.b., vhdG::Pxvl hmfB-	This study	3a
	mcherry phleo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BWX3370	parS Δ 9 no a.b., wt parS in spo0J no a.b.	2	За-с
BWX5556	parS Δ 9 no a.b., -1° parS no a.b., vhdG::PxvI hupA-mcherry	This study	3a-c
	phleo, yuxG::Pxyl hupB erm	,	
BWX5558	parS Δ 9 no a.b., -1° parS no a.b., yhdG::Pxyl hmfA-mcherry,	This study	За-с
	yuxG::Pxyl hmfB erm	-	
BWX5490	parS∆9 no a.b., -1° parS no a.b., yhdG::Pxyl hns-mcherry	This study	3a-c, S1ef
	phleo		
BWX4070	parS Δ 9 no a.b., Δ spo0J spec (no loxP), wt parS in spo0J,	<u>3</u>	4ab
	yvbJ::Pspank (optRBS) spo0J ∆parS cat		
BWX5602	parS Δ 9 no a.b., Δ spo0J spec (no loxP), wt parS in spo0J,	This study	4ab, S2ab
	yvbJ::Pspank (optRBS) spo0J ∆parS cat, yhdG::Pxyl hupA-		
	mcherry phleo, yuxG::Pxyl hupB erm		
BWX5603	parS Δ 9 no a.b., Δ spo0J spec (no loxP), wt parS in spo0J,	This study	4ab, S2ab
	yvbJ::Pspank (optRBS) spo0J ∆parS cat, yhdG::Pxyl hmfA-		
	mcherry phleo, yuxG::Pxyl hmfB erm		
BWX5663	parS Δ 9 no a.b., Δ spo0J spec (no loxP), wt parS in spo0J,	This study	4ab, S2ab
	yvbJ::Pspank (optRBS) spo $0J \Delta parS cat, yhdG::Pxyl hns-$		
	mcherry phleo		
BWX5864	parS Δ 9 no a.b., wt parS in spo0J no a.b., yhdG::Pxyl hns	This study	S1def
	phleo		
Strains use	d to build strains		
BWX5502	parS Δ 9 no a.b., Δ spoUJ spec, wt parS in spoUJ,	This study	
	yvbJ::Pspank (optRBS) spo∪J ∆parS cat, yndG::Pxyl nupA-		
DWINEEOC			
BAAY2200	parody no a.u., dspoul spec, with paro in spoul,	This study	
	yvuurspank (upikos) spuuu ∆pars cai, ynuu∷PXyi nmtA-		
BW/Y5540		This study	
BW/V5551	yuxG:.r xyi hupb enn	This study	
BW/X5942	yuxor xyr illillo ollir yhdG::Pxyl hns phloo	This study	
011/043			1

Plasmid	Description	Reference
pWX722	yvbJ::Pspank (optRBS) spo0J ∆parS cat	<u>3</u>
pWX981	ycgO::PftsW hns-mcherry phleo	This study
pWX991	yhdG::Pxyl hns-mcherry phleo	This study
pWX993	yhdG::Pxyl hupA-mcherry phleo	This study
pWX994	yhdG::Pxyl hupB-mcherry phleo	This study
pWX1001	ycgO::PftsW hupA-mcherry phleo	This study
pWX1002	ycgO::PftsW hupB-mcherry phleo	This study
pWX1072	yhdG::Pxyl hmfA-mcherry phleo	This study
pWX1073	yhdG::Pxyl hmfB-mcherry phleo	This study
pWX1180	yuxG Pxyl hupB erm	This study
pWX1181	yuxG Pxyl hmfB erm	This study
pWX1182	yhdG::Pxyl mcherry phleo	This study
pWX1252	yuxG::Pxyl hns erm	This study
pWX1270	yhdG::Pxyl nbhmfA-mcherry phleo	This study
pWX1271	yhdG::Pxyl nbhmfB-mcherry phleo	This study

Table S2. Plasmids used in this study

Table S3.	Oligonucleotides	used in	this	study
-----------	------------------	---------	------	-------

Oligos	Sequence	Use
odr198	GCCCTCGAGTTTTCCGGCAACTGCGTCTTTAAGCGC	BWX523
odr214	GCCGAATTCAAATCACCTTAAATCCTTGACGAGC	BWX523
odr829	CATCAAATCTTACAAATGTAG	sequencing
oML87	CCAGAAGTTTCTCAGAGTCGG	sequencing
oWX486	GCCGCTCTAGCTAAGCAGAAGGC	sequencing
oWX1894	ACATAGTACATAGCGAATCTTCCC	sequencing
oWX2227	CGCAAGCTTACATAAGGAGGAACTACTATGGGCGAGCTGCCAATTG CGCCG	pWX1072
oWX2229	CGCAAGCTTACATAAGGAGGAACTACTATGGAACTGCCAATTGCCCC TATC	pWX1073
oWX2231	GGTCATAACCTGAAGAATTGGATCCCTTATTGCTTGATCAGGAAATC GTCG	pWX1270
oWX2233	CGCAAGCTTACATAAGGAGGAACTACTATGGAACTGCCGATTGCGC CGATC	pWX1271
oWX2493	TGCGACATCGTATAACGTTACTGG	sequencing
oWX2555	CAGAAGCTTACATAAGGAGGAACTACTATGAGCGAAGCACTTAAAAT TCTG	pWX981, pWX1252
oWX2556	CATGAGCTCGAGGCCTGATCCGCCAGATCCTTGCTTGATCAGGAAA TCGTCG	pWX981
oWX2559	CAGAAGCTTACATAAGGAGGAACTACTATGAACAAGACTCAACTGAT TGATG	pWX1001
oWX2561	CAGAAGCTTACATAAGGAGGAACTACTGTGAATAAATCTCAATTGAT CGACAAG	pWX1002
oWX2587	CATGAGCTCGAGGCCTGATCCGCCAGATCCCTTAACTGCGTCTTTCA GTGCC	pWX1001
oWX2588	CATGAGCTCGAGGCCTGATCCGCCAGATCCGTTTACCGCGTCTTTC AGTGC	pWX1002
oWX2903	GAGCTCGAGGCCTGATCCGCCAGATCCCTTAAACATTTTGCGCGCC AGCTC	pWX1072
oWX2904	GAGCTCGAGGCCTGATCCGCCAGATCCCTTTTTGAAGCGACGAACT GCCAG	pWX1073
oWX3230	TAGCATCTCGAGACACTAGTTTAGTTTACCGCGTCTTTCAGTGC	pWX1180
oWX3231	TCCATTTTGACAGCCATTGAAGCTTTACATTGTAATCATGTCCAGAAAATG	pWX1180
oWX3232	TAGCATCTCGAGACACTAGTTTACTTTTTGAAGCGACGAACTGCCAG	pWX1181
oWX3233	TCCATTTTGACAGCCATTGAAGCTTTACATTGTAATCATGTCCAGAAA ATG	pWX1181
oWX3234	ATCTGTATTTGAATGAAGCTTACATAAGGAGGAACTACTATGG	pWX1182
oWX3235	TAACCTGAAGAATTGGATCCTTATTTGTATAATTCGTCCATTCCACC	pWX1182
oWX3573	GGTCATAACCTGAAGAATTGGATCCCTTATTGCTTGATCAGGAAATC GTCG	pWX1252
oWX3649	GGTCATAACCTGAAGAATTGGATCCCTTATTGCTTGATCAGGAAATC GTCG	pWX1270
oWX3650	GAGCTCGAGGCCTGATCCGCCAGATCCTTTCTTGAAACGGCGAACT GCCAAC	pWX1271

Sample name	Figure	Reference	Identifier
Wang_ChIP_antiHBsu_BWX523	2a	This study	<u>GSM8326547</u>
Wang_ChIP_antimCherry_BWX523	2b, S1a	This study	<u>GSM8326548</u>
Wang_ChIP_antimCherry_BWX5269	2c	This study	<u>GSM8326550</u>
Wang_ChIP_antimCherry_BWX5271	2d	This study	<u>GSM8326551</u>
Wang_ChIP_antimCherry_BWX5598	2e	This study	<u>GSM8326552</u>
Wang_ChIP_antimCherry_BWX5256	2f, S1a	This study	<u>GSM8326549</u>
Wang_ChIP_antimCherry_BWX5427	2g	This study	<u>GSM8326553</u>
Wang_ChIP_antimCherry_BWX5429	3h	This study	<u>GSM8326554</u>
Wang_ChIP_antimCherry_BWX5600	3i	This study	<u>GSM8326555</u>
Wang_WGS_BWX523	2ab, S1a	This study	<u>GSM8326556</u>
Wang_WGS_BWX5269	2c	This study	<u>GSM8326558</u>
Wang_WGS_BWX5271	2d	This study	<u>GSM8326559</u>
Wang_WGS_BWX5598	2e	This study	<u>GSM8326560</u>
Wang_WGS_BWX5256	2f, S1a	This study	<u>GSM8326557</u>
Wang_WGS_BWX5427	2g	This study	<u>GSM8326561</u>
Wang_WGS_BWX5429	3h	This study	<u>GSM8326562</u>
Wang_WGS_BWX5600	3i	This study	<u>GSM8326563</u>
Wang_HiC_BWX3370_repA	3abc	This study	<u>GSM8326564</u>
Wang_HiC_BWX3370_repB	3abc	This study	<u>GSM8326565</u>
Wang_HiC_BWX5492_repA	3a	This study	<u>GSM8326566</u>
Wang_HiC_BWX5494_repA	3а	This study	<u>GSM8326567</u>
Wang_HiC_BWX5556_repA	3abc	This study	<u>GSM8326568</u>
Wang_HiC_BWX5556_repB	3abc	This study	<u>GSM8326569</u>
Wang_HiC_BWX5490_repA	3abc	This study	<u>GSM8326570</u>
Wang_HiC_BWX5490_repB	3abc	This study	<u>GSM8326571</u>
Wang_HiC_BWX5496_repA	3a	This study	<u>GSM8326572</u>
Wang_HiC_BWX5498_repA	3a	This study	<u>GSM8326573</u>
Wang_HiC_BWX5558_repA	3abc	This study	<u>GSM8326574</u>
Wang_HiC_BWX5558_repB	3abc	This study	<u>GSM8326575</u>
Wang_HiC_BWX4470_IPTG0min	4ab	This study	<u>GSM8326576</u>
Wang_HiC_BWX4470_IPTG15min	4ab	This study	<u>GSM8326577</u>
Wang_HiC_BWX4470_IPTG25min	4ab	This study	<u>GSM8326578</u>
Wang_HiC_BWX4470_IPTG35min	4ab	This study	<u>GSM8326579</u>
Wang_HiC_BWX5602_IPTG0min	4ab	This study	<u>GSM8326580</u>
Wang_HiC_BWX5602_IPTG15min	4ab	This study	<u>GSM8326581</u>
Wang_HiC_BWX5602_IPTG25min	4ab	This study	<u>GSM8326582</u>
Wang_HiC_BWX5602_IPTG35min	4ab	This study	<u>GSM8326583</u>
Wang_HiC_BWX5603_IPTG0min	4ab	This study	<u>GSM8326584</u>
Wang_HiC_BWX5603_IPTG15min	4ab	This study	<u>GSM8326585</u>

Table S4. Next Generation Sequencing samples used in this study

Wang_HiC_BWX5603_IPTG25min	4ab	This study	<u>GSM8326586</u>
Wang_HiC_BWX5603_IPTG35min	4ab	This study	<u>GSM8326587</u>
Wang_HiC_BWX5663_IPTG0min	4ab	This study	<u>GSM8326588</u>
Wang_HiC_BWX5663_IPTG15min	4ab	This study	<u>GSM8326589</u>
Wang_HiC_BWX5663_IPTG25min	4ab	This study	<u>GSM8326590</u>
Wang_HiC_BWX5663_IPTG35min	4ab	This study	<u>GSM8326591</u>
Wang_ChIP_antiRok_BWX001	S1b	This study	<u>GSM8326592</u>
Wang_ChIP_antiHNS_BWX001	S1c	This study	<u>GSM8326593</u>
Wang_ChIP_antiHNS_BWX5864	S1d	This study	<u>GSM8326594</u>
Wang_WGS_BWX001	S1bc	This study	<u>GSM8326595</u>
Wang_WGS_BWX5864	S1d	This study	<u>GSM8326596</u>
Wang_HiC_BWX5490_repC	S1e	This study	<u>GSM8326597</u>
Wang_HiC_BWX5490_repD	S1e	This study	<u>GSM8326598</u>
Wang_HiC_BWX5864_repA	S1e	This study	<u>GSM8326599</u>
Wang_HiC_BWX5864_repB	S1e	This study	<u>GSM8326600</u>

Supplementary Uncropped Gels

Left gel: Western Blotting using anti-mCherry antibodies

Right gel: Western Blotting using anti-SigA antibodies

Lanes:

- ladder
- ladder
- BWX523
- BWX5256
- BWX5269
- BWX5271
- BWX5598
- BWX5427
- BWX5429
- BWX5600
- ladder

To label the molecular weight of the bands, we adjusted the image contrast of the right-most lane containing the protein ladder (regions in the red-dotted boxes) to generate the images in the red solid boxes on the right. The protein ladder was Precision Plus Protein Dual Color Standards (Bio-Rad 161-0347).

SI References

- 1. Youngman, P.J., Perkins, J.B., and Losick, R. (1983). Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A *80*, 2305-2309. 10.1073/pnas.80.8.2305.
- 2. Wang, X., Brandao, H.B., Le, T.B., Laub, M.T., and Rudner, D.Z. (2017). Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science *355*, 524-527. 10.1126/science.aai8982.
- 3. Wang, X., Hughes, A.C., Brandao, H.B., Walker, B., Lierz, C., Cochran, J.C., Oakley, M.G., Kruse, A.C., and Rudner, D.Z. (2018). In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. Mol Cell *71*, 841-847 e845. 10.1016/j.molcel.2018.07.006.