S1 Text. Supplemental Materials and Methods

Plasmid construction

pTP016 [allelic replacement plasmid] was constructed by inserting annealed oligos oTP048 and oTP049 into pTP009 between BamHI and Ncol. pTP009 was constructed by isothermal assembly from three PCR products. Product 1 was derived from pMAD [1] (amplified with oTP023 and oTP024) and contained the pBR322 origin, *bla*, and *erm*. Product 2 was derived from pBursa [2] (amplified with oTP025 and oTP026) and contained the temperature-sensitive origin pE194ts. Product 3 was derived from pMAD (amplified with oTP027 and oTP028) and contained *lacZ*.

pTP078 [△*noc::spec* insertion-deletion plasmid] was constructed by isothermal assembly using three PCR products and the allelic replacement vector pTP016 cut with EcoRI and Eagl. Product 1 was derived from pWX466 (amplified with oTP046 and oTP047) and contained the *spec* gene. Product 2 is the 1 kb region of DNA upstream of the *noc* gene (amplified from HG003 gDNA using oTP120 and oTP200). Product 3 is the 1 kb region of DNA downstream of the *noc* gene (amplified from HG003 gDNA using oTP201 and oTP123). pWX466 is a plasmid harboring the *spec* gene flanked by *loxP* sites (XW and DZR, unpublished).

pTP083 [Δ *parB*::*kan* insertion-deletion plasmid] was constructed by isothermal assembly using three PCR products and the allelic replacement vector pTP016 cut with EcoRI and EagI. Product 1 was derived from pWX470 (amplified with oTP046 and oTP047) and contained the *kan* gene. Product 2 is the 1 kb region of DNA upstream of the *parB* gene (amplified from HG003 gDNA using oTP226 and oTP227). Product 3 is the 1 kb region of DNA downstream of the *parB* gene (amplified from HG003 gDNA using oTP228 and oTP229). pWX470 is a plasmid harboring the *kan* gene flanked by *loxP* sites (XW and DZR, unpublished).

pTP088 [Δ *rbd*::*kan* insertion-deletion plasmid] was constructed by isothermal assembly using three PCR products and the allelic replacement vector pTP016 cut with EcoRI and Eagl. Product 1 was derived from pWX470 (amplified with oTP046 and oTP047) and contained the *kan* gene. Product 2 is the 1 kb region of DNA upstream of the *rbd* gene (amplified from HG003 gDNA using oTP244 and oTP245). Product 3 is the 1 kb region of DNA downstream of the *rbd* gene (amplified from HG003 gDNA using oTP246 and oTP247).

pTP095 [\triangle *comEB*:*kan* insertion-deletion plasmid] was constructed by isothermal assembly using three PCR products and the allelic replacement vector pTP016 cut with EcoRI and Eagl. Product 1 was derived from pWX470 (amplified with oTP046 and oTP047) and contained the *kan* gene. Product 2 is the 1 kb region of DNA upstream of the *comEB* gene (amplified from HG003 gDNA using oTP265 and oTP266).). Product 3 is the 1 kb region of DNA downstream of the *comEB* gene (amplified from HG003 gDNA using oTP265).

pTP077 [transposon containing plasmid with Notl sites] was constructed by isothermal assembly from two PCR products. Product 1 was amplified from pTM402 [3] using oTP196 and 197. Both oligonucleotide primers containined Notl sites. Product 2 was amplified from pTM402 using oTP198 and oTP199.

pTP044 [L54a integrase expression plasmid] was constructed by isothermal assembly from two DNA fragments. Fragment 1 was a PCR product derived from pFA545 [2] (amplified using oTP096 and oTP097) that contained the *repC* and *tetR* region. Fragment 2 was derived from pYL112d19 [4] (digested with Stul and Apal) and contained the *bla* and L54a *int* gene.

pTP069 [*P*_{tet}-^{*Sa*}*noc S. aureus* integration plasmid] was generated in a 2-way ligation with a PCR product containing the *S. aureus noc* gene with its native RBS (amplified from HG003 gDNA using oTP126 and oTP127) and plasmid pTP063 digested with Hpal and EcoRI. pTP063 (*P*_{tet} integration vector) was generated by replacing the *P*_{spank} promoter and *lacl* gene from pTP041 with the *P*_{xyl/tet} promoter, *tetR*, and *lacZ* region from pRAB14-*lacZ* (both plasmids were digested with EcoRI and HindIII). pTP041 (*P*_{spank} integration vector) was generated by isothermal assembly from four PCR products. Product 1 was derived from pDR110 (amplified using oTP078 and 090) contained the *P*_{spank} promoter and *lacl*. Product 3 derived from pWX465 (amplified with oTP088 oTP089) contained the *cat* gene. Product 4 derived from pML6 (amplified with oTP084 and oTP085) contained the pACYC origin and *bla*. pRAB14-*lacZ* is a *S. aureus* expression vector containing *tetR-P*_{xyl/tet} [5]. pLL29 is an integration vector containing *attP*(L54a) [6]. pDR110 contains the *P*_{spank} promoter (DZR unpublished). pWX465 is a plasmid harboring the *cat* gene flanked by *loxP* sites (XW and DZR unpublished).

pTP167 [*P_{tet}*-(optimized RBS) ^{*Bs*} *noc S. aureus* integration plasmid] was constructed by sitedirected mutagenesis using oligos oTP441 and oTP442 (containing a consensus RBS) and plasmid pTP144. pTP144 [P_{tet} -^{*Bs*}*noc*] was constructed by isothermal assembly of a PCR product containing the *B. subtilis noc* gene (amplified from PY79 gDNA using oTP414 and oTP415) and pTP063 digested by Hpal and EcoRI.

pTP170 [P_{tet} -^{Sa}*noc_{his}* S. *aureus* integration plasmid] was constructed by isothermal assembly of a single PCR product from plasmid pTP069 using oTP445 and oTP310 (containing a His6 tag). The PCR product was treated with DpnI to degrade the template DNA prior to isothermal assembly.

pTP171 [*P*_{tet}-(optimized RBS) ^{*Bs*}*noc*_{*his*} *S. aureus* integration plasmid] was constructed by isothermal assembly of a single PCR product from plasmid pTP167 using oTP446 and oTP310 (containing a His6 tag). The PCR product was treated with DpnI to degrade the template DNA prior to isothermal assembly.

pTP137 [*ycgO*:: P_{spank} - ^{Bs} noc spec] was constructed in a 2-way ligation with a PCR product containing the *B. subtilis noc* gene with its native RBS (amplified from PY79 gDNA using oTP389 and oTP402) and pER107 digested with NheI and XmaI. pER107 is an ectopic integration vector containing the P_{spank} promoter for insertions in the nonessential *ycgO* gene (ER and DZR, unpublished).

pTP169 [*ycgO*::*P*_{spank}-(optimized RBS) ^{Sa}noc spec] was constructed by site-directed mutagenesis using oTP439 and oTP440 (containing a consensus RBS) and pTP136. pTP136

was constructed in a 2-way with a PCR product containing the *S. aureus noc* gene with its native RBS (amplified from HG003 gDNA using oTP387 and oTP401) and pER107 digested with Nhel and Xmal.

pTP173 [*ycgO*::*P*_{spank}-^{*Bs*}*noc*_{his} *spec*] was constructed by isothermal assembly of a single PCR product from plasmid pTP137 using oTP446 and oTP447. The PCR product was treated with DpnI to degrade the template DNA prior to isothermal assembly.

pTP174 [*ycgO*::*P*_{spank}-(optimized RBS) ^{Sa}noc_{his} spec] was constructed by isothermal assembly of a single PCR product from plasmid pTP169 using oTP445 and oTP447. The PCR product was treated with DpnI to degrade the template DNA prior to isothermal assembly.

pTP200 [*amyE*::*P_{xyIA}-(optimized* RBS) ^{*sa*}*noc-yfp* spec] was constructed by isothermal assembly using the ectopic integration vector pDR150 digested with BamHI and EcoRI and a PCR product amplified from an isothermal assembly reaction using oTP 501 and oTP511. The isothermal assembly reaction contained three PCR products. Product 1 derived from pDR150 (amplified with oTP501 and oTP510) contained the *P_{xyI}* and *xyIR*. Product 2 containing *yfp* was amplified from gDNA extracted from strain bKM1585 using oTP502 and oTP511. Product 3 containing ^{*Sa*}*noc* with an optimized RBS was amplified from pTP174 with oTP505 and oTP508. pDR150 is an ectopic integration vector containing the *P_{xyI}* promoter for insertions in the nonessential *amyE* gene (DZR, unpublished).

S. aureus strain construction

Construction of the knock-out mutants

S. aureus knock-out mutants were generated by allelic replacement. pMAD-based plasmids (pTP078, 083, 088, 095) were transformed into strain RN4220 (for pTP083, 088, 095) or TM18 (for pTP078), followed by selection on TSB plates containing erythromycin (10 µg/ml) at 30°C. After incubation for 2 days, transformants were streaked on TSB plates containing erythromycin (10 µg/ml) and X-gal (250 µg/ml). One blue colony was inoculated in liquid TSB medium supplemented with erythromycin (10 µg/ml), and incubated with shaking for 3 h at 30°C followed by 6 h at 37°C. 100ul of a 20-fold dilution was then plated onto TSB plate containing erythromycin (10 µg/ml) and X-gal (250 µg/ml) and incubated overnight at 37°C to generate single-crossover integrants. A single blue colony was then inoculated into TSB medium without antibiotics and grown at 30°C. After the culture became turbid, cells were diluted 30-fold into the same medium and grown again at 30°C. After the culture became turbid, cells were 30-fold diluted and grown at 30°C for 3 h, followed by 37°C for 6 h. Serial dilutions of this culture were then plated on TSB supplemented with X-Gal and the antibiotic corresponding to the antibiotic resistance cassette used to replace the target gene (kanamycin/neomycin for $\triangle comEB$, $\triangle rbd$, $\Delta parB$, and spectinomycin for Δnoc). White colonies were then tested for erythromycin sensitivity. The insertion-deletions were then confirmed by colony PCR using primers amplifying a region 1 kb upstream and downstream of the target gene. The insertion-deletions were transduced into HG003 using phage 80alpha.

Construction of complementation strains

HG003 (Δ *noc::spec*, *geh*::pTP069) was constructed by phage transduction using *S. aureus* phage 80alpha infected RN4220 (*geh*::pTP069) as donor, and HG003 (Δ *noc::spec*) as recipient. RN4220 (*geh*::pTP069) was constructed by electroporating plasmid pTP069 into strain RN4220 (pTP044), and selection on TSB plate containing chloramphenicol (5 µg/ml). In the presence of L54a integrase, expressed from pTP044, pTP069 integrates into the *attB*(L54a) site within the *geh* gene of *S. aureus*. RN4220(Δ *noc::spec*, *geh*::pTP069) was constructed in the same way, except that RN4220(Δ *noc::spec*) was used as recipient.

HG003 (Δ *noc*::*spec*, *geh*::pTP170), and HG003 (Δ *noc*::*spec*, *geh*::pTP171) were constructed in the same way as HG003 (Δ *noc*::*spec*, *geh*::pTP69).

HG003 (Δ *noc*::*spec*, Δ *rbd*::*kan*, *geh*::pTP069) and HG003 (Δ *noc*::*spec*, Δ *comEB*::*kan*, *geh*::pTP69) were constructed by phage transduction using phage 80alpha infected RN4220 (Δ *rbd*::*kan*) or RN4220 (Δ *comEB*::*kan*) as donor, and HG003 (Δ *noc*::*spec*, *geh*::pTP69) as recipient.

HG003 (Δ *noc::spec*, Δ *rbd::kan*) and HG003 (Δ *noc::spec*, Δ *comEB::kan*) were constructed by phage transduction using phage 80alpha infected RN4220 (Δ *rbd::kan*) or RN4220 (Δ *comEB::kan*) as donor, and HG003 (Δ *noc::spec*) as recipient. Transductants of HG003 (Δ *noc::spec*, Δ *rbd::kan*) were selected on agar plates with 0.5X LB lacking NaCl supplemented with kanamycin/neomycin (25 µg/ml each), and incubated at 30°C for 2 days. Transductants of HG003 (Δ *noc::spec*, Δ *comEB::kan*) were selected on agar plates with LB lacking NaCl supplemented with LB lacking NaCl supplemented with kanamycin/neomycin, and incubated at 37°C overnight.

Reconstruction of suppressor mutants

HG003 ($\Delta noc::spec dnaA^{sup1}$), HG003 ($\Delta noc::spec dnaA^{sup2}$), and RN4220 ($\Delta noc::spec dnaA^{sup1}$) were constructed by phage transduction using phage 80alpha. The originally suppressor strains aTP512 HG003 ($\Delta noc::spec \Delta rbd::kan dnaA^{sup1}$) and aTP522 HG003 ($\Delta noc::spec \Delta rbd::kan dnaA^{sup1}$) and aTP522 HG003 ($\Delta noc::spec \Delta rbd::kan dnaA^{sup2}$) were used as donors and HG003 or RN4220 as recipient. Transductants were selected on TSB plates supplemented with spectinomycin, and screened for kanamycin sensitivity. To screen for transductants that contained the linked *dnaA* suppressor mutation, colony PCR was performed on the transductants using oTP342 and oTP343 and the products were purified and sequenced using oTP342.

Reconstructed suppressor strains aTP774 HG003 ($\Delta noc::spec \Delta rbd::kan dnaA^{sup1}$) and aTP776 HG003 ($\Delta noc::spec \Delta rbd::kan dnaA^{sup2}$) were constructed in the same way as HG003 ($\Delta noc::spec dnaA^{sup1}$), except that HG003 ($\Delta rbd::kan$) was used as recipient, and that transductants were selected on agar plates with 0.5X LB lacking NaCl supplemented with spectinomycin at 30°C.

Construction of strains for immunoblot and ChIP-seq

Strains used for immunoblot analysis and ChIP-seq contained a transposon insertion in the *spa* gene encoding Surface Protein A. The donor strain was NE286, a USA300 strain harboring a mariner transposon insertion in *spa* [7]. The transducing phage used was phage 80alpha. Transductants were selected on TSB plates supplemented with 5 ug/ml erythromycin.

Construction of strains for Tn-Seq validation

Transposon insertions from the Nebraska Transposon Mutant Library [7] were first transduced into HG003 and then into the Noc depletion strain (aTP359) using phage 80alpha selecting for erythromycin resistance.

Construction of Bacillus subtilis strains

bTP039 [Δ noc::tet, ycgO::P_{spank}-^{Bs}noc_{his} spec] and bTP041 [Δ noc::tet, ycgO::P_{spank}-^{Sa}noc_{his} spec] were constructed by transforming gDNA from bRB73 (Δ noc::tet) into strains bTP035 (ycgO::P_{spank}-^{Bs}noc_{his} spec) and bTP037 ([Δ noc::tet, ycgO::P_{spank}-^{Sa}noc_{his} spec). bTP035 and bTP037 were constructed by transforming SacII-digested plasmid pTP173 and pTP174 into (ycgO::cat) selecting for Spec(R) and screening for Cm(S).

bTP043 [Δ noc::tet Δ minD::kan ycgO::P_{spank}-^{Bs}noc_{his} spec] and bTP045 [Δ noc::tet Δ minD::kan ycgO::P_{spank}-^{Sa}noc_{his} spec] were constructed by transforming gDNA from bML712 (Δ noc::tet Δ minD::kan) into strains bTP039 and bTP041 selecting for Kan(R) and screening for Tet(R) and Spec(R).

bTP061 [Δ *noc::tet amyE::P_{xy/}*^{Sa}*noc-yfp spec*] was constructed by transforming the SacIIdigested plasmid pTP200 into PY79 Δ *noc::tet* selecting for Spec(R) and screening for the inability to degrade starch.

Supplemental References

1. Arnaud M, Chastanet A, Debarbouille M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70: 6887-6891.

2. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, et al. (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101: 12312-12317.

3. Wang H, Claveau D, Vaillancourt JP, Roemer T, Meredith TC (2011) High-frequency transposition for determining antibacterial mode of action. Nat Chem Biol 7: 720-729.

4. Lee CY, Buranen SL, Ye ZH (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103: 101-105.

5. Helle L, Kull M, Mayer S, Marincola G, Zelder ME, et al. (2011) Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology 157: 3314-3323.

6. Luong TT, Lee CY (2007) Improved single-copy integration vectors for Staphylococcus aureus. J Microbiol Methods 70: 186-190.

7. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, et al. (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4: e00537-00512.

8. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, et al. (2011) Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193: 2332-2335.

9. Herbert S, Ziebandt AK, Ohlsen K, Schafer T, Hecker M, et al. (2010) Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun 78: 2877-2889.

10. Youngman PJ, Perkins JB, Losick R (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A 80: 2305-2309.

11. Wu LJ, Ishikawa S, Kawai Y, Oshima T, Ogasawara N, et al. (2009) Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28: 1940-1952.

12. Kurokawa K, Mizumura H, Takaki T, Ishii Y, Ichihashi N, et al. (2009) Rapid exchange of bound ADP on the Staphylococcus aureus replication initiation protein DnaA. J Biol Chem 284: 34201-34210.

13. Liew AT, Theis T, Jensen SO, Garcia-Lara J, Foster SJ, et al. (2011) A simple plasmidbased system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology 157: 666-676.

Gene name	Annotation	p-value	Fold- change	Validation
comEB	deoxycytidylate deaminase	0.06	17.5	+++
mprF	lysyl-phosphotidylglycerol synthase	0.007	9.3	-
SAOUHSC_01496	cytidylate kinase	0.001	7.5	N/A
SAOUHSC_01270	putative uncharacterized protein	0.35	7.5	-
yabA	regulator of DNA replication initiation	0.49	7.4	-
ecsB	putative ABC transporter	0.028	6.8	+
SAOUHSC_01154	SepF cell division protein	0.021	6.8	N/A
SAOUHSC_02337	MurA peptidoglycan precursor biosynthesis	0.046	6.7	-
rbd	rhomboid protease, putative	0.07	6.3	+++
SAOUHSC_01497	L-asparaginase, putative	0.10	6.1	-
tagA	techoic acid biosynthesis	0.010	5.6	N/A
SAOUHSC_01050	putative uncharacterized protein	0.013	3.8	+
fmtA	Affects methicillin resistance level	0.038	3.6	N/A

S1 Table Candidate sln genes identified by Tn-seq

	total cells counted	percent with abnormal septa	percent lysed cells
WT	724	1.1%	0
Δnoc	310	4.2%	4.5%
Δrbd	507	5.9%	0.6%
$\Delta noc \Delta rbd$	353	27.2%	23.8%

S2 Table Quantification of abnormal septa and lysis in cells lacking Noc and Rbd

strain	mapped reads	loci	aa change	confirmed
$\Delta noc \Delta rbd$	664,476			
#2	935,976	Deletion in 5' UTR of <i>dnaA</i>		Yes
#3	1,877,640	SAOUHSC_01907 Aldo-keto reductase (AKRs) superfamily Point mutation upstream of SAOUHSC R0005	N10S N/A	
#4	257,669	No mutation detected		
#5	1,260,537	SAOUHSC_00018: DnaC helicase	A352V	Yes
#6	787,308	upstream of SAOUHSC_01866	N/A	
#7	2,723,259	dnaA	V141L	Yes
#8	1,846,980	pheS: phenylalanyl-tRNA synthetase subunit alpha	M48K	Yes
#9	3,067,565	rRNA: Sa5SA, Gene: SAOUHSC_R00011	N/A	
#10	2,172,921	aroA: 3-phosphoshikimate 1-carboxyvinyltransferase	T291frames hift	
$\Delta noc \Delta com EB$				
#22	996,316	dnaA	R254Q	Yes
#23	978,230	SAOUHSC_01679: MiaB 2-methylthioadenine synthetase	Q150*	Yes
#24	1,234,711trmB: tRNA (guanine-N(7)-)-methyltransferase trmB SAOUHSC 01866: Phosphotransferase enzyme family		deletion: 1772372- 1772564bp	
#25	3,175,065	SAOUHSC_02963: clfB clumping factor B	D617G	
#26	1,658,211	SAOUHSC_01866: Phosphotransferase enzyme family	E157G	Yes
#27	2,465,322	SAOUHSC_01679: MiaB 2-methylthioadenine synthetase SAOUHSC_01866: Phosphotransferase enzyme family	Q150* L185R	
#28	1,249,282	SAOUHSC_00018: DnaC helicase	A280V	Yes
#29	2,025,633	SAOUHSC_01866: Phosphotransferase enzyme family	D147G	

S3 Table $\triangle noc \ \triangle rbd$ and $\triangle noc \ \triangle comEB$ suppressors

S4 Table Strains used in this study

Strain	train Relevant Genotype and Features		
S. aureus			
RN4220	S. aureus subsp. aureus NCTC8325 derivative; MSSA; r-m+;	Nair 2011	
HG003	<i>S. aureus</i> subsp. aureus NCTC8325 with <i>rsbU</i> and <i>tcaR</i> repaired	Herbert 2010	
TM17	RN4220 <i>geh</i> ::pTM304; replication of pT181-ori containing plasmids in trans	Wang 2011	
TM18	RN4220 ΔattBφ11::Orf5 (non-lysogenic and represses bacteriophage φ11 replication)	Wang 2011	
TM51	TM18 (pTM378), transposon recipient strain	Wang 2011	
aTP310	TM17 (pTP077), transposon donor strain	this work	
aTP310	TM17 (pTP077), transposon donor strain	this work	
aTP315	TM18 Δnoc::spec	this work	
aTP317	TM18 Δnoc::spec, (pTM378) transposon recipient strain	this work	
aTP341	HG003 Δnoc::spec	this work	
aTP977	RN4220 Δnoc::spec	this work	
aTP411	RN4220 Δrbd ::kan	this work	
aTP428	HG003 Δ <i>rbd::kan</i>	this work	
aTP477	RN4220 $\triangle comEB$::kan	this work	
aTP506	HG003 Δ <i>comEB</i> :: <i>kan</i>	this work	
aTP730	RN4220 ΔparB::kan	this work	
aTP742	HG003 Δ <i>parB</i> :: <i>kan</i>	this work	
aTP983	RN4220 Δnoc::spec geh::pTP069	this work	
aTP359	HG003 Δnoc::spec geh::pTP069	this work	
aTP431	HG003 Δnoc::spec Δrbd::kan geh::pTP069 (Sa noc)	this work	
aTP508	HG003 Δ <i>noc</i> :: <i>spec</i> Δ <i>comEB</i> :: <i>kan geh</i> ::pTP069 (Sa <i>noc</i>)	this work	
aTP510	HG003 $\Delta noc::spec \Delta rbd::kan$	this work	
aTP550	HG003 $\Delta noc::spec \Delta comEB::kan$	this work	
aTP979	RN4220 $\Delta noc::spec dnaA^{sup1}$	this work	
aTP768	HG003 $\Delta noc::spec dnaA^{sup1}$	this work	
aTP770	HG003 $\Delta noc::spec dnaA^{sup2}$	this work	
aTP774/512	HG003 $\Delta noc::spec \Delta rbd::kan dnaA^{sup1}$	this work	
aTP776/522	HG003 $\Delta noc::spec \Delta rbd::kan dnaA^{sup2}$	this work	
aTP557	HG003 $\Delta noc::spec \Delta comEB::kan dnaA^{sup3}$	this work	
aTP518	HG003 $\Delta noc::spec \Delta rbd::kan dnaC_{A352V}$	this work	
aTP780	HG003 $\Delta noc::spec dnaA^{sup1} geh::pTP069 (Sanoc)$	this work	
aTP782	HG003 $\Delta noc::spec dnaA^{sup2} geh::pTP069 (Sanoc)$	this work	
aTP811	HG003 $\Delta noc::spec geh::pTP170$ (^{Sa} noc _{his})	this work	
aTP813	HG003 $\Delta noc::spec geh::pTP171 (^{Bs}noc_{his})$	this work	

NE286	USA300 <i>spa</i> ::Tn	Fey 2013
aTP394	HG003 spa::Tn	this work
aTP403	HG003 $\Delta noc::spec spa::Tn$	this work
aTP851	HG003 $\Delta noc::spec dnaA^{sup1} spa::Tn$	this work
aTP853	HG003 $\Delta noc::spec dnaA^{sup^2} spa::Tn$	this work
aTP959	HG003 $\Delta noc::spec \ geh::pTP170$ (^{Sa} noc _{his}) spa::Tn	this work
aTP961	HG003 $\Delta noc::spec geh::pTP171 (^{Bs}noc_{his}) spa::Tn$	this work
aTP821	HG003 pLOW-FtsZ-GFP	this work
aTP845	HG003 Δ <i>noc</i> :: <i>spec</i> , pLOW-Zgfp	this work
aTP823	HG003 $\Delta noc::spec dnaA^{sup1}$, pLOW-Zgfp	this work
aTP825	HG003 Δ <i>noc</i> :: <i>spec dnaA</i> ^{sup1} , pLOW-Zgfp HG003 Δ <i>noc</i> :: <i>spec dnaA</i> ^{sup2} , pLOW-Zgfp	this work
aTP919	HG003 pNDX2	this work
aTP921	HG003 pNDX2-dnaA	this work
aTP923	HG003 pNDX2-dnaA ^{R318H}	this work
aTP925	HG003 spa::Tn, pNDX2	this work
aTP927	HG003 spa::Tn, pNDX2-dnaA	this work
aTP929	HG003 <i>spa</i> ::Tn, pNDX2- <i>dnaA</i> ^{R318H}	this work
aTP949	HG003 Δ <i>noc</i> :: <i>spec</i> , pNDX2	this work
aTP951	HG003 Δ <i>noc</i> :: <i>spec</i> , pNDX2- <i>dnaA</i>	this work
B. subtilis		
PY79	wild type	Youngman 1983
bRB73	PY79 $\Delta noc::tet$	Lab stock
bDR3019	PY79 Δ soj(parA)	Lab stock
bDR2292	PY79 Δ spo0J(parB)::spec	Lab stock
bML712	PY79 Δnoc::tet Δ minD::kan	Lab stock
bTP039	PY79 Δnoc::tet ycgO:: P_{spank} - ^{Bs} noc _{his} (spec) PY79 Δnoc::tet ycgO:: P_{spank} - ^{Sa} noc _{his} (spec)	this work
bTP041	PY79 $\Delta noc::tet \ ycgO::P_{spank}$ -Sanoc _{his} (spec)	this work
bTP043	PY79 Δnoc::tet ΔminD::kan ycgO:: P_{spank} - ^{Bs} noc _{his} (spec)	this work
bTP045	PY79 Δnoc::tet ΔminD::kan ycgO:: P_{spank} - ^{Sa} noc _{his} (spec)	this work
bTP061	PY79 Δnoc::tet amyE:: P_{xyl} - ^{Sa} noc-yfp (spec)	this work
4702	168 $trpC2 \Delta noc::tet amyE::P_{xyl}$ - ^{Bs} noc-yfp (spec)	Wu 2009
bRB467	PY79 $\Delta noc::tet amyE::P_{xyl}^{-Bs}noc-yfp (spec)$	Lab stock

Plasmid	Relevant features	Source
pLOW-FtsZ-GFP	S. aureus FtsZ-GFP expression plasmid	Liew 2011
pMAD	Vector for allelic replacement	Arnaud 2004
pNDX2	S. aureus vector containing aTc-inducible promoter	Kurokawa 2009
pNDX2-dnaA	S. aureus aTc-inducible dnaA expression plasmid	Kurokawa 2009
pNDX2-R318H	S. aureus aTc-inducible $dnaA_{R318H}$ expression plasmid	Kurokawa 2009
pTM304	pCL25-P _{Pen} repC11 TT	Wang 2011
pTM378	pWV01 ^{Ts} ori aphA-3 Gram ⁺ RBS HMAR1 C9 transposase	Wang 2011
pTP016	pMAD derivative	this work
pTP044	L54a integrase expression plasmid	this work
pTP069	P_{tet} -Sanoc S. aureus integration plasmid	this work
pTP077	Transposon containing plasmid with NotI sites	this work
pTP078	Δnoc::spec insertion-deletion plasmid	this work
pTP083	Δ <i>parB</i> :: <i>kan</i> insertion-deletion plasmid	this work
pTP088	Δ <i>rbd</i> :: <i>kan</i> insertion-deletion plasmid	this work
pTP095	Δ <i>comEB</i> : <i>kan</i> insertion-deletion plasmid	this work
pTP137	ycgO::P _{spank} - ^{Bs} noc spec	this work
pTP167	P_{tet} -(optimized RBS) ^{Bs} noc S. aureus integration plasmid	this work
pTP169	<i>ycgO</i> :: <i>P</i> _{spank} -(optimized RBS) ^{Sa} noc spec	this work
pTP170	P_{tet} -Sanoc _{his} S. aureus integration plasmid	this work
pTP171	P_{tet} -(optimized RBS) ^{Bs} noc _{his} S. aureus integration plasmid	this work
pTP173	ycgO::P _{spank} - ^{Bs} noc _{his} spec	this work
pTP174	<i>ycgO</i> :: <i>P</i> _{spank} -(optimized RBS) ^{Sa} noc _{his} spec	this work
pTP200	<i>amyE</i> :: <i>P_{xyl}-(optimized RBS)</i> ^{Sa} noc-yfp spec	this work

$\ensuremath{\textbf{S5}}\xspace$ Table Plasmids used in this study

S6 Table Oligonucleotides primers used in this study

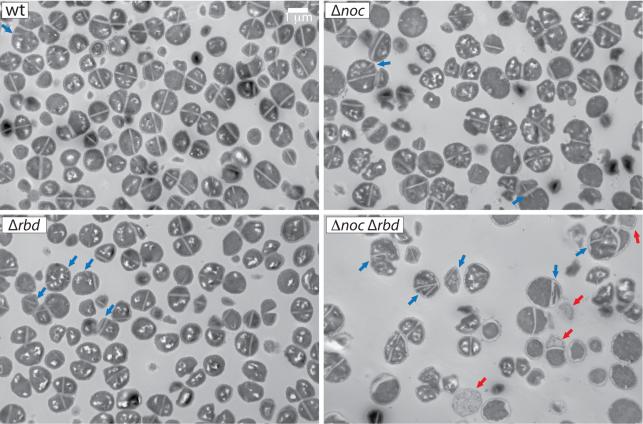
Ugod for -	lagmid construction
_	plasmid construction
oTP023	GTTACGTTACACATTAACTAGACCATGGTATGGATCCATCACCGATACGCGAGCG
oTP024	CGTGTGATGCGCTGCGTCCGCTACACCTCCGGATAATAAATA
oTP025	ATATATTTATTATCCGGAGGTGTAGCGGACGCAGCGCATCACACG
oTP026	CAACATAATATGCTAAAGGCCTCGGTCTTTTGCGCAGTCGGC
oTP027	GCCGACTGCGCAAAAGACCGAGGCCTTTAGCATATTATGTTG
oTP028	CGCTCGCGTATCGGTGATGGATCCATACCATGGTCTAGTTAATGTGTAACGTAAC
oTP046	CGGCTCGAGTTCTGCTCCGCTCAG
oTP047	CGGGTCGACATCAGGGAGCACTGGTCAAC
oTP048	CATGGTATGAATTCATAGTCGACTTACTCGAGTATGCTAGCAATCGGCCGATTG
oTP049	GATCCAATCGGCCGATTGCTAGCATACTCGAGTAAGTCGACTATGAATTCATAC
oTP078	CCCCGAAAAGTGCCACCTGGAATTCGACTCTCTAGCTTGAG
OTP083	GTCAATTGTCTGATTCGTTACCTCCCCACACAACCAACAAAAC
oTP084	GTTTTGTTGGTTGTGGGGGGGGGGGGGGGAGGTAACGAATCAGACAATTGAC
oTP085	CTCAAGCTAGAGAGTCGAATTCCAGGTGGCACTTTTCGGGGG
oTP088	GCAATTAATGTGAGTTAGGAAGCTTCATACGGCAATAGTTACCC
oTP089	GCCCCGCAAAAGACATAATGGAGCTGTAATATAAAAACCTTC
oTP090	GGGTAACTATTGCCGTATGAAGCTTCCTAACTCACATTAATTGC
oTP091	GAAGGTTTTTATATTACAGCTCCATTATGTCTTTTGCGGGGC
oTP096	TTATAAAAGCCAGTCATTAGGGCTAGCCACTCATAGTTCTAAAC
oTP097	ATCATCTCAATATCCGAATAGGAAATTCAGAGAAGCCTTTGAG
oTP120	CATTAACTAGACCATGGTATGCCAGAAGACTTAGATTATAGTAAG
oTP123	CGTATCGGTGATGGATCCAATCGCCGGAAACGTTGCAAATATAC
oTP126	ATAGTTAACAAGGAGCGAATGGATAATGAAAAAAC
oTP127	AATGAATTCCTACTAACGTTTATATATTCGAA
oTP196	ATGGCATGCCGAATTGGGCCGGCCGGCCGCTCTAGTAACAGGTTGGCTG
oTP197	AAAGGATCCAGACTGGACGGGCGGCCGCTCTAGTAACAGGTTGGCTG
oTP198	CCGTCCAGTCTGGATCC
oTP199	GGCCCAATTCGGCATGC
oTP200	GAGGGAGCAGAACTCGAGCCGCTTCAATATGTCCAATGATGTCATC
oTP201	GTGCTCCCTGATGTCGACCCGCGTTAGTAGTAGGATGTCGTATAC
oTP226	CATTAACTAGACCATGGTATGCTGTAAAATCAACGTACTTAAATTTG
oTP227	GAGGGAGCAGAACTCGAGCCGTTTTGACAATTCACTCACATCAC
oTP228	GTGCTCCCTGATGTCGACCCGCGTAGGTATGGTAAATAGTTACAC
oTP229	CGTATCGGTGATGGATCCAATCGGTTGAGGTGTTTTAATACCTTC
oTP244	CATTAACTAGACCATGGTATGGCACCTTTGTGTTTCTCCC
oTP245	GTGCTCCCTGATGTCGACCCGGGCTATTACTATTAAGTGAATCG
oTP246	GAGGGAGCAGAACTCGAGCCGGTCTATGTTCATTTAGTCCTCC

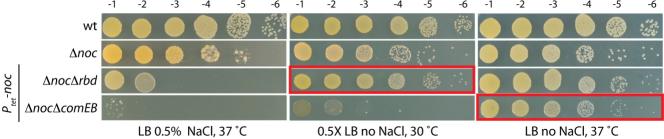
oTP247	CGTATCGGTGATGGATCCAATCGACGATTGTGTAGCGCATGG				
oTP265	CATTAACTAGACCATGGTATGGACATATTTGTCTTGGTTAGC				
oTP266	GAGGGAGCAGAACTCGAGCCGCATAAAATATTCTTCCCATTTG				
oTP267	GTGCTCCCTGATGTCGACCCGCTGACTAAAGGTTAATGTTTTGC				
oTP268	CGTATCGGTGATGGATCCAATCCGATAAATGAAGCTAATTGTGC				
oTP310	CTTGAGGGTAGCGGACAAG				
oTP387	ATACCCGGGAAGGAGCGAATGGATAATGAAAAAAC				
oTP389	ATACCCGGGAAGGTGGTGGTAGGTACATG				
oTP401	CGAGCTAGCCTACTAACGTTTATATATTCGAA				
oTP402	CGAGCTAGCCTATTTTGGTATGCGAATCGTT				
oTP414	GTATGATGGTACCGTTAACAAGGTGGTGTAGGTACATG				
oTP415	GAAAAGTGCCACCTGGAATTCCTATTTTGGTATGCGAATCGTT				
oTP439	GTCCCGGGAAGGAGGAACTACTATGAAAAACCTTTTTCAAAATTATTTGG				
oTP440	GAAAAAGGTTTTTTCATAGTAGTTCCTCCTTCCCGGGACAAG				
oTP441	GTACCGTTAACAAGGAGGAATAAAAAATGAAGCATTCATT				
oTP442	GAATGAATGCTTCATTTTTTTTTTCCTCCTTGTTAACGGTACC				
oTP445	GGTGGTGGTGGTGGTGCCCGGGACGTTTATATATTCGAATTTTTATTTCATAATAATC				
oTP446	GGTGGTGGTGGTGCCCGGGTTTTGGTATGCGAATCGTTAATTG				
oTP447	GGGCACCACCACCACCATTAGGCTAGCTCGCATGCAAGC				
оТР501	AGTAGTTCCTCCTTAAGCTTGCATGCCTGCAGG				
oTP502	CTCGAGGGTTCCGGAGTGAG				
oTP505	AAGCTTAAGGAGGAACTACTATGAAAAAACC				
oTP508	CTCACTCCGGAACCCTCGAGACGTTTATATATTCGAATTTTTATTTCATAA				
oTP510	CGCCATTCGCCAGGGCTG				
оТР511	TGGTAGCGACCGGCGCTCAGGATCCTTATTTGTATAGTTCATCCATGCCATG				
Used for m	arker frequency analysis				
oTP478	CAGAAACACGCCCAGTACTAA				
оТР479	CTGCAACTTTCTTACAGCCAAG				
oTP480	GAGTATGGTGGACGTGGTATG				
oTP481	TTTGTACTGGCGTAGGCTTT				
оТР482	GGGTAGTAGGCCAGCAATTTA				
oTP483	CCTTGATAAGTACATGGCGATTTG				
oTP484	CCTCATGTACAAGACCGGTAAG				
oTP485	GTTCCTCCATGTTCAGCTACA				
Confirmati	on of <i>dnaA</i> suppressor mutants				
оТР342	CGTCCAACTCATGATTTTATAAG				
оТР343	GATTACATTTCCCAAAGTTTCC				
Confirmati	on of insertion into ycgO site				
oKM011	CAATTCCCGGATTCCTGG				
oKM012	CCACTGGCTTTTGCAGTTC				
	1				

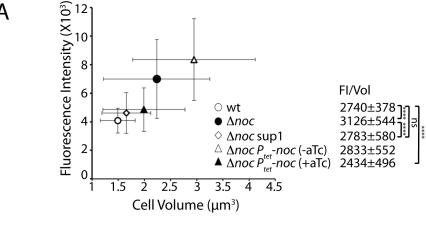
Peak #	Peak position	FIMO identified	Score ¹	<i>p</i> -value ²	q-value ³	Matched
	(bp)	motif position (bp)		_	-	sequence
1	67149 -	67228 -	15.95	2.03E-	0.26	ATTTCTCG
	67300	67241		06		GGCAAT
2	83280 -	83342 -	6.058	8.85E-	1	ATTTCCTG
	83445	83355		05		GGTTAC
3	104230 -	104303 -	15.95	2.03E-	0.26	ATTTCCCA
	104382	104316		06		GGCAAT
4	128017 -	128098 -	11.01	1.53E-	0.861	ATAACCCG
	128170	128111		05		GAAAAT
5	133029 -	133107 -	15.95	2.03E-	0.26	ATTGCCCA
	133188	133120		06		GGAAAT
6	143823 -	143895 -	16.96	4.98E-	0.128	ATTTCCCG
	143988	143908		07		GGGCAT
7	153267 -	153339 -	21.91	5.34E-	0.0301	ATGTCCCG
	153427	153352		08		GGAAAT
8	169562 -	169633 -	21.91	5.34E-	0.0301	ATTTCCCG
	169711	169646		08		GGAATT
9	200985 -	201061 -	15.95	2.03E-	0.26	ATATCCTG
	201140	201074		06		GGAAAT
10	266582 -					
	266747					
11	307853 -	307912 -	10	3.47E-	0.981	ATTTCCTA
	308009	307925		05		GGAAAA
12	331029 -	331107 -	10	3.47E-	0.981	ATTTCCTA
	331175	331120		05		GGGAAT
13	345989 -	346071 -	14.95	3.26E-	0.288	ATTTCCTCG
	346139	346084		06		GAAAT
14	415983 -	416059 -	15.95	2.03E-	0.26	ATTGCCTG
	416134	416072		06		GGAAAT
15	429234 -	429295 -	12.01	4.64E-	0.385	ATTTCCCG
	429391	429308		06		GGTGGT
16	477582 -	477659 -	11.01	1.53E-	0.861	ATTTCCCA
	477741	477672		05		GGTTAT
17	567954 -	568017 -	14.95	3.26E-	0.288	ATTTCTCA
	568098	568030		06		GGAAAT
18	578431 -	578495 -	11.01	1.53E-	0.861	ATTGCCCA
	578600	578508		05	ļ	GGAAAA
19	691103 -	691185 -	20.90	1.50E-	0.053	ATTTCCTG
	691282	691198		07		GGAAAT
20	877608 -	877680 -	15.95	2.03E-	0.26	ATTTCCTG
	877773	877693		06		GGTAAT
21	2261104 -	2261177 -	20.90	1.50E-	0.053	ATTTCCCC
	2261269	2261190		07		GGAAAT

S7 Table Peaks enriched by ChIP-seq in *S. aureus* using anti-^{*Bs*}Noc antibody

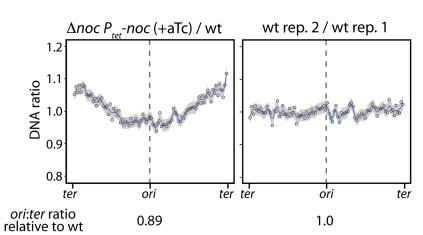
22	2222020	2272124	14.05	2.245	0.200	
22	2272079 -	2272134 -	14.95	3.26E-	0.288	ATTTCCCA
22	2272224	2272147	10	06	0.001	GTAAAT
23	2324836 -	2324889 -	10	3.47E-	0.981	ATGTCCTA
24	2324988	2324902	21.01	05	0.0201	GGAAAT
24	2371742 -	2371807 -	21.91	5.34E-	0.0301	ATTTCCCG
	2371901	2371820	1.6.0.6	08	0.100	GGAAAA
25	2405033 -	2405114 -	16.96	4.98E-	0.128	ATCACCCG
	2405205	2405127		07		GGAAAT
26	2429616 -	2429687 -	14.95	3.26E-	0.288	ATTTCCTA
	2429779	2429700		06		GGAAAT
27	2436417 -	2436491 -	15.95	2.03E-	0.26	ATTTCCCA
	2436578	2436504		06		GGCAAT
28	2508131 -	2508218 -	14.95	3.26E-	0.288	ATTTCCTG
	2508295	2508231		06		GTAAAT
29	2511766 -	2511842 -	14.95	3.26E-	0.288	ATTTCCCG
	2511931	2511855		06		AAAAAT
30	2566488 -	2566560 -	10	3.47E-	0.981	ATTGCTCA
	2566633	2566573		05		GGAAAT
31	2577721 -	2577796 -	14.95	3.26E-	0.288	ATTTCTTGG
	2577893	2577809		06		GAAAT
32	2587242 -	2587325 -	14.95	3.26E-	0.288	ATTTCCTTG
	2587401	2587338		06		GAAAT
33	2619613 -	2619677 -	14.95	3.26E-	0.288	ATTTACTG
	2619751	2619690		06		GGAAAT
34	2635932 -	2636010 -	15.95	2.03E-	0.26	ATTTCCCTG
	2636083	2636023		06		GAAAA
35	2685378 -	2685433 -	20.90	1.50E-	0.053	ATTTACCG
	2685536	2685446		07		GGAAAT
36	2725979 -	2726054 -	21.91	5.34E-	0.0301	GTTTCCCG
	2726137	2726067		08		GGAAAT
37	2749873 -	2749938 -	21.91	5.34E-	0.0301	ATTTCCCG
	2750038	2749951		08		GGACAT
38	2754594 -	2754679 -	15.95	2.03E-	0.26	ATTTCCTG
	2754806	2754692		06		GGACAT
39	2771924 -	2771996 -	16.96	4.98E-	0.128	CTTGCCCG
	2772081	2772009	- 0.7 0	07		GGAAAT
40	2791904 -	2791983 -	12.01	4.64E-	0.385	ATTTCCCG
	2792075	2791996	12.01	06	0.000	GGTGAA
41	2808311 -					0010111
	2808476					
	20004/0					

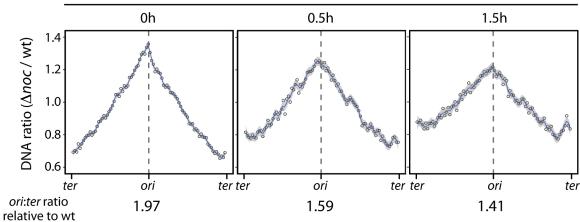

1. The score is for the strength of the match to the consensus motif.

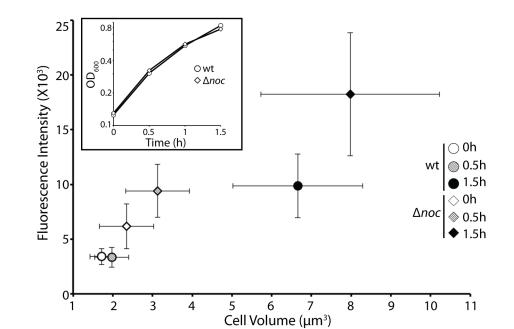

2. The *p*-value is defined as the probability of a random sequence of the same length as the motif matching that position of the sequence with as good or better a score.

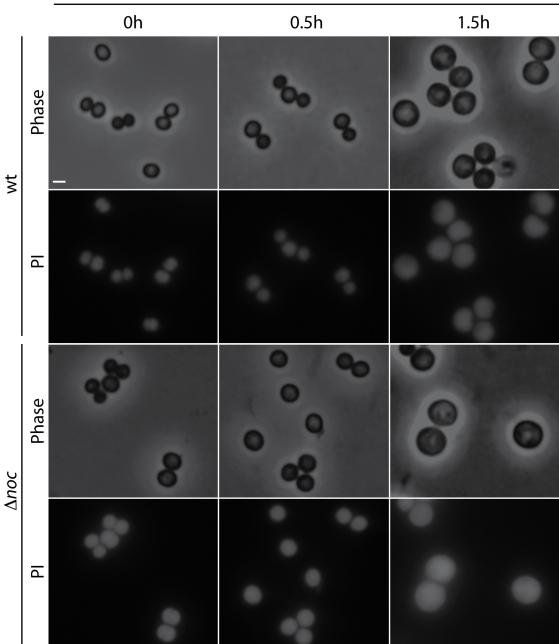

3. The q-value is defined as the false discovery rate if the occurrence is accepted as significant.

Peaks #10 and #41 did not contain a potential motif that matches the consensus motif.


Peak #9, #40, #41 were more modestly enriched and peaks #2, #4, #10, #16, #18, #23 were not enriched in the ChIP-seq experiment in which in ^{Bs}Noc_{his} was expressed in *S. aureus*.

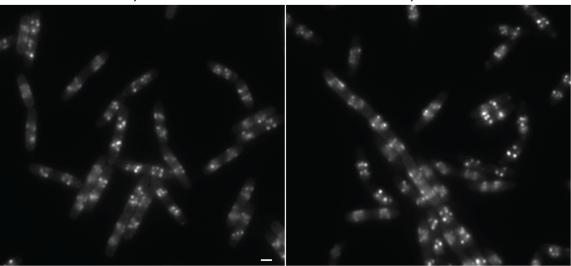


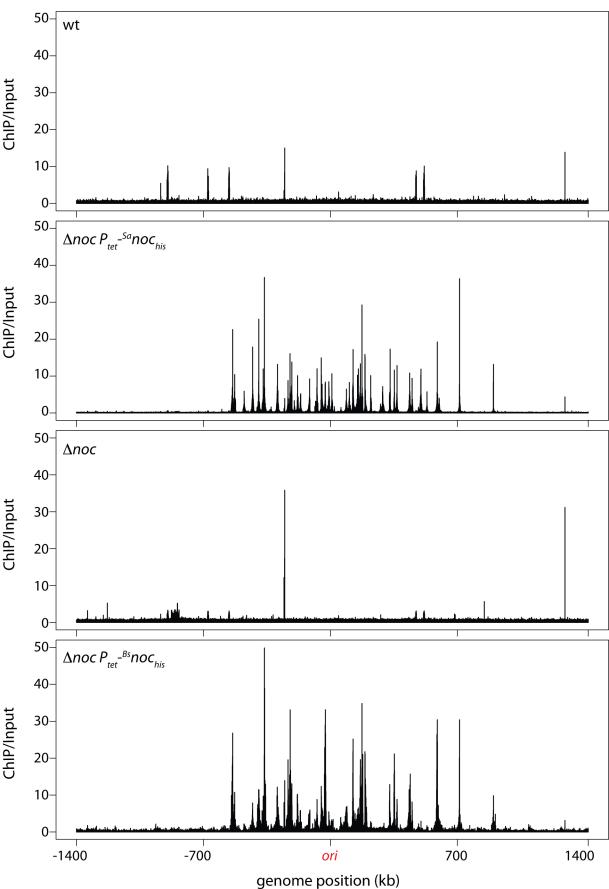


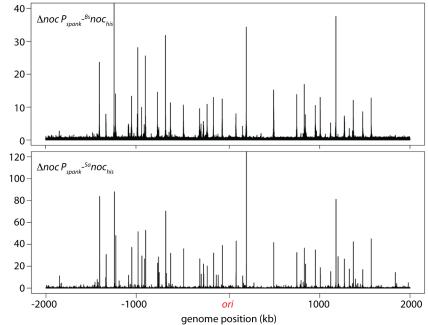


В

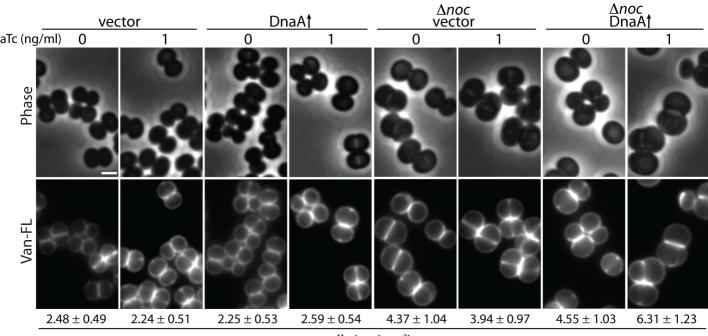
Α

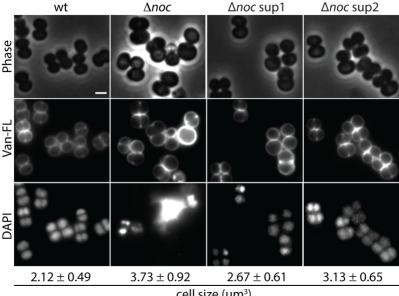


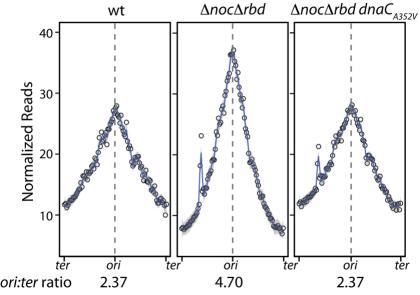

Time after PC190723 addition


 $\Delta noc P_{xyl}$ -Bs noc-yfp

 $\Delta noc P_{xyl}$ -sanoc-yfp




anti-His6


Normalized ChIP/Mock

cell size (µm³)

cell size (µm³)

