Table S1: SinR peaks.

Peak ^a	Gene ^b	Location ^c	MEME ^d	Reference ^e
2555393	tapA/yqzG	intergenic	ATCGTTCTCTTTAAAGAACTT	1,2,3,4
		-	TTTGTTCGTTTAAAAGAATGT	
			ATCGTTGATTATACTCTATTT	
3530041	epsA/slrR	intergenic	TTCGTTCATTATAAGGAATTT	3
	-	-	TTTGTTCTCTAAAGAGAACTT	
			TTCCTCTAATTTACTGCACTT	

^aPeak indicates the nucleotide position of the center of the peak of ChIP-seq signal in *Bacillus subitilis* 3610 genome (CP020102). Peaks that were enriched in "*wt*" and abolished in a *sinR* mutant are indicated in this table. Peaks that were abolished in the absence of SinR are included in this table. Only peaks over 10 ChIP/input units were included in the table. Analysis was done with atleast 2 biological replicates. Complete data set is available in **Table S11**.

^bGene indicates the closes proximal gene to peak center. Two genes are indicated when the peak was between two genes and could regulate either.

^cLocation indicates whether the peak was in the non-coding region between two genes(intergenic) or in the coding region within a gene (intragenic).

^d21bp putative binding site(s) obtained from MEME analysis of 200bp region surrounding the Peak^a.

^eReference for the respective targets.

Table S2: SIrR peaks

Peak ^a	Gene ^b	Location ^c	MEMEd	Reference ^e
231712	ybeC	intragenic	AGAACTCATATATTGAACGGA	
383033	srfAA	intragenic	TGGCGCAACATATGAAACACC	6
413611	ubiD	intragenic	AGAGGCAGTATATCGAACAAA	
635197	B4U62_03	Intragenic	GCGCGCCATATAAGATACCAC	
	360			
1153278	yisL	Intergenic	GGGGAACATATATGACACACC	
1273134	manP	intragenic	AGGAACCATAAATGAAACGCC	
1291225	yjiA/yjiB	intergenic	AGGGGGAATATATGATGCCTG	
1377262	purU	intergenic	TGAAATCATATATGACTCAGC	
1715599	cheC	intragenic	AAAGGCATTATAAAGAACATT	
1791694	pksH	intragenic	AAGCGCATTATATGACGCTTA	
1817424	pksL	intragenic	AAGAGACATATATGAAACATA	
1971030	ppsD	intragenic	GCACGCTTTATATGACGCTTC	
2175497	yorM	intragenic	AGGGCTCGTATATAGCGCTAA	
3109475	bceB	intragenic	GAGCGCAGTATATAACACCAT	
3465091	spbB	intragenic	ACAGGTAATATAAGAAAAGAA	
			AAGGTTAATATAAAAATCATT	
3663106	lytA	Intragenic	AGAAGCAATATAAAGAACAGT	5,6
3669448	B4U62_19	intragenic	TGAGTTAATATATGATGCGGT	
	215/ggaB			
3699576	pgsB	intragenic	CGACGCCATATATGACACGGT	
3993511	ухјМ	intragenic	GGAGGCAACATATTACTCCTA	
			AGGCGGCATATATCATTAAAA	
4174619	yybL	intragenic	CGGGACAATATAAAACAAGGT	

^aPeak indicates the nucleotide position of the center of the peak of ChIP-seq signal in *Bacillus subitilis* 3610 genome (CP020102). Peaks less that 10 ChIP/input units were eliminated from analysis. Peaks that were enriched in a *sinR* mutant and abolished in a *sinR* slrR double mutant are indicated in this table. Complete data set is available in **Table S11**.

^bGene indicates the closes proximal gene to peak center. Two genes are indicated when the peak was between two genes and could regulate either.

^cLocation indicates whether the peak was in the non-coding region between two genes(intergenic) or in the coding region within a gene (intragenic).

^d21bp putative binding site(s) obtained from MEME analysis of 200bp region surrounding the Peak^a.

^eReference for the respective targets.

Table S3: SinR•SIrR peaks

Peak ^a	Gene ^b	Location ^c	MEME ^d	Reference ^e
44865	abrB	Intergenic	AAAACGTTCTTGTTATGACAC	
231709	ybeC	intragenic	CCTCCGTTCAATATATGAGTT	
413578	ubiD	intragenic	AATTTGTTCGATATACTGCCT	
739925	yefB	intragenic	GACCCCTTCGTTATACAATCC	
743331	yeeB	intragenic	CTTTTGTTCGTTTTATGGAAT	
	B4U62_041	Intergenic		
813897	95		IIIIIAIICGIIAIAAIGCAI	
1692292	fliE	intragenic	TATTAGTTCGTTAAATGAGTC	
		intragenic	TCAGTGTTCGCTATTTTACCT	
1696778	flil		CACCTGTTCGTTCTAGTAAAC	
1707609	flhB	intragenic	TGCCCGTGCGTTATATGATCA	
		intragenic	TCAATGTTCTTTATAATGCCT	
1715602	cheC		CTTCCATTCTTAAAAAGATGC	
1842327	pksN	intragenic	TTCACGTTCGTTTTATTGACT	
		intergenic	AAACTGTTCTTATTAAGGCTC	
			CCTCTATTCGAAATAAGGCTT	
2047545	yoaW		TCTATATTCTTTTTAAAAGTT	
2068474	yobl	intragenic	GCACTGTTCTTTATAGTATAT	
2141427	yodP	intragenic	GCGCTGTGCGATATATGGCTT	
2166868	yosJ	intragenic	TTTCTGATCTTTATAAAACCC	
2346317	asnC/dnaD	Intragenic	CTCACGTTCGTGAAACGATTC	
2456372	ansA	intragenic	TTTTCGTTCTTAATTTGATCG	
2611221	cdd	intragenic	GCCGCGTTCTCAATATTGCAG	
2619631	yqeZ	intragenic	GTCCCGTTCGTTACAAGACGC	
2692910	yqaO	Intergenic	TCAGTGTTCTTGATATGAACT	
2735546	yrdA	intergenic	TTTTTGTTCTTTTTAACGAAA	
		Intragenic	TCTTTGTTCCTTTTATTGTTA	
2859212	minC		TGCGTGTTCTTTTGATGAGCT	
3025807	sspA/ytbJ	Intragenic	TTCTTGTTCGCTATAAAGGGT	
3043216	ytxE	intragenic	CTTGTGTTCTTTATTTTACTC	6
3048025	ytxG	intergenic	TTATTATTCTTTATTTGAGCG	
		intragenic	AATTCGTTCTTGATATGGCTG	
3055447	ytoP		CCGCTGTTCGAAATATGAACC	
3119744	ytzC	intragenic	TTCTTGATCGTTATAATGCTC	
3424044	yvgJ	intragenic	TAATCGTTCGTAATAAAGCTG	
3458169	yvaQ	intragenic	TAGGCGTTCTTAATATGCAGC	
3663100	lytA	Intragenic	TTACTGTTCTTTATATTGCTT	5,6
3728345	ywqH/B4U6 2_19510	intergenic	TTTTTGTTCGTTATACAGCTA	
3776591	ywmC	intergenic	TC <mark>G</mark> CTTTCGTTATATGAGTC	
3943570	sacX	intragenic	ATTTTGTTCATTATATGATCG	
4011182	citH	intragenic	TCCCTGTTCTTTTTTTATGACTG	

^aPeak indicates the nucleotide position of the center of the peak of ChIP-seq signal in *Bacillus subitilis* 3610 genome (CP020102). Peaks that were either enriched or enhanced in $sIrA^+$ and

abolished in *slrR slrA*⁺ are included in this table. Only peaks over 10 ChIP/input units were included in the table. Analysis was done with atleast 2 biological replicates. Complete data set is available in **Table S11**.

^bGene indicates the closes proximal gene to peak center. Two genes are indicated when the peak was between two genes and could regulate either.

^cLocation indicates whether the peak was in the non-coding region between two genes(intergenic) or in the coding region within a gene (intragenic).

^d21bp putative binding site(s) obtained from MEME analysis of 200bp region surrounding the Peak^a.

^eReference for the respective targets.

Strains	P _{lytA}	P _{lytA} ^{ext}
"wt"	24.34 ± 4.46	26.26 ± 1.13
sinR	26.88 ± 1.69	35.89 ± 10.04
sinR slrR	28.83 ± 5.08	31.22 ± 4.89
sIrA⁺	7.34 ± 0.66	3.99 ± 0.94
slrR slrA⁺	28.20 ± 1.03	37.11 ± 2.56
site(12345)* sIrA+	32.07 ± 2.11	5.12 ± 0.39
site(12345)* slrR	29.83 ± 2.16	32.75 ± 4.05
slrA ⁺		

Table S4- Expression of *P*_{*i*ytA}-*lacZ* and *P*_{*i*ytA}^{ext}-*lacZ* in Figure 4B (Miller units)^a

^a± is the standard deviation of three replicates.

Table S5- Ex	pression of <i>P</i> _f	lacha-insert'-lacZ re	porters in Fi	aure 4D (Miller u	inits)ª
	\mathbf{p}			guio te (

Reporters	"wt"	slrA ⁺	slrR slrA⁺
site1	63.39 ± 14.49	26.62 ± 1.60	67.06 ± 7.61
site23	79.99 ± 19.32	38.14 ± 3.67	109.28 ± 53.43
site4	83.93 ± 26.15	85.07 ± 14.38	64.41 ± 5.52
site5	55.71 ± 11.24	34.05 ± 4.59	40.75 ± 11.08
fliF'	59.53 ± 14.18	75.79 ± 12.01	53.30 ± 7.90
site1*	101.69 ± 8.52	99.38 ± 9.44	76.22 ± 15.36
site1*2	132.19 ± 16.45	120.46 ± 6.92	105.79 ± 31.58

^a± is the standard deviation of three replicates.

Table S6: Expression of	of PygzD-lacZ	in Figure S1	(Miller u	nits)ª
-------------------------	---------------	--------------	-----------	--------

Strains	PygzD
"wt"	4.71 ± 0.39
sinR	4.81 ± 1.21
sinR slrR	5.19 ± 0.29
sinR slrR ygzD	133.36 ± 7.46

^a± is the standard deviation of three replicates.

Strains	P _{hag}
"wt"	132.40 ± 6.09
sIrA⁺	5.83 ± 1.51
slrA⁺ slrR	129.02 ± 7.15
slrA ⁺ site1*	32.25 ± 3.47
slrA⁺site2*	24.26 ± 7.02
slrA⁺site3*	6.98 ± 0.80
slrA ⁺ site4*	5.89 ± 1.78
slrA ⁺ site5*	7.22 ± 1.55
slrA ⁺ site(12)*	111.34 ± 1.38
slrA⁺site(123)*	119.26 ± 8.67
slrA ⁺ site(1234)*	107.56 ± 5.22
slrA ⁺ site(12345)*	131.46 ± 15.84

Table S7: Expression of *P*_{hag}-*lacZ* in Figure S5 (Miller units)^a

^a± is the standard deviation of three replicates.

Table S8: Plasmids

Plasmid	Genotype	Reference
pminiMAD3	oriBsTs spec amp	
pDG268	amyE::lacZ cat amp	7
pAP10	thrC::P _{hag} -GFP mIs amp	
pAM58	thrC::fliE-lacZ mls	
pAM59	thrC::flil-lacZ mls	
pAM60	thrC::flhB-lacZ mls	
pAM61	thrC::cheC-lacZ mls	
pAM62	thrC::fliF-lacZ mls	
pAM81	thrC::P _{ygzD} -lacZ mls amp	
pKM087	ycgO::kan amp	8
pDP96	thrC::P _{hag} -lacZ mls amp	
pDP99	thrC::P _{flache} -lacZ mls	
pDP100	thrC::P _{lytA} -lacZ mls amp	
pAM103	ycgO∷P _{slrA} -slrA kan amp	
pAM109	amyE::P _{lytA} ^{ext} -lacZ cat amp	
pAM112	amyE::P _{flache} -lacZ cat amp	
pAM113	amyE::P _{flache} -fliE-lacZ cat amp	
pAM114	amyE::P _{flache} -flil-lacZ cat amp	
pAM115	amyE::P _{flache} -flhB-lacZ cat amp	
pAM116	amyE::P _{flache} -cheC lacZ cat amp	
pAM117	amyE::P _{flache} -fliF lacZ cat amp	
pAM118	amyE::P _{flache} -fliE(site1) cat amp	
pAM119	amyE::P _{flache} -flil(site2) cat amp	
pDP620	ΩsinsIrsite1 oriBsTs spec amp	

pDP621	Ωsinslrsite2 oriBsTs spec amp	
pDP622	ΩsinsIrsite3 oriBsTs spec amp	
pDP623	ΩsinsIrsite4 oriBsTs spec amp	
pDP624	ΩsinsIrsite5 oriBsTs spec amp	
pDP638	ΩsinsIrsite23 oriBsTs spec amp	
pDG1663	thrC::lacZ mls amp	9

Table S9: Primers

Number	Primer sequence
8423	CTCCTGGATCCTAGGCTAGCTCAGTTTTTTCACCCTCAATATCCT
8424	AGGAGGCTAGCAACAAATCAAGTAAACAATAGCC
8425	AGGAGGGATCCCATGACCTCATCAAGATTTACA
8426	AGGAGGCTAGCAGCGAGAGATTGGACTGGCT
8427	AGGAGGGATCCCAATCGGCTCATTCATGTCAT
8428	AGGAGGCTAGCCACCTTGCGTTAAAAATCAGG
8429	AGGAGGGATCCACGTAAGCCAGAATTTCTGCT
8430	AGGAGGCTAGCGATGAGCTTGTTGATTTTTCG
8431	AGGAGGGATCCGGTTTCCAATCAGCTCTCTG
8432	AGGAGGCTAGCGCAGCATCTGCATCAATCGT
8433	AGGAGGGATCCGCATCGCTGTCTGATTTGTC
8008	AGGAGGAATTCCGTTCTGTTATTGTGAACGCA
8139	AGGAGGAATTCAACAGCGTCAACCACTATCC
8140	AGGAGGGATCCACAATCTCGATTGATTATATTGT
8141	AGGAGGAATTCTCCATTGTGCCTTTTCCGATA
8142	AGGAGGGATCCTTAAATGTTACTGTCTGGCGATAC
7924	AGGAGGAATTCTGCCCGATCAAGCTTAATCTT
7925	AGGAGGGATCCCCAACCTGACTGAGCTCCAT
7926	AGGAGGGATCCCATTGTGGTGAGAAGCACGA
7927	AGGAGGAATTCCTGAAGGAGACCCGATTATC
7928	AGGAGGAATTCGCCTAATGTTGATCCATTAAAG
7929	AGGAGGGATCCAGAGTACGATTCATGTTAACC
7930	AGGAGGAATTCCGAGAGGTTCGGGAGTTTAT
7931	AGGAGGGATCCGTTCACGGAATTTATTTGCCG
8337	AGGAGGAATTCCGGCTCTGCTGATATCTTCT
8338	AGGAGGGATCCCAGATCAGGTGATAGAAAAGC
8273	CAGTGAATTCGAGCTCGGTACCCCGTCATGTTGATTTTTCTGATACTG
8274	GTCAGAAGCTACTTGGGACTCATTTAAACTCGAAATAGAGTTTTTTAAAAGCTCCGAAAAG
8275	CTTTTCGGAGCTTTTAAAAAACTCTATTTCGAGTTTAAATGAGTCCCAAGTAGCTTCTGAC
8276	GGTCGACTCTAGAGGATCCCCCGTTGATTTGGCTTTGATCAAGTG
8277	CAGTGAATTCGAGCTCGGTACCCGATGCAATTGAAAGATAAACTTCTG
8278	GTTCGTTCTAGTAAACGAGGTAAAATAGCAAAGACTGAAGGTGTATAGCCTTTTGTCG
8279	CGACAAAAGGCTATACACCTTCAGTCTTTGCTATTTTACCTCGTTTACTAGAACGAAC

8280	GGTCGACTCTAGAGGATCCCCCTAATGGCCTTGAATCATAAACTGC
8281	CAGTGAATTCGAGCTCGGTACCCGCTGATGAAAAAGCTCAAAAAGGAAC
8282	GGTTCCATGCTCGTTTGCACCTGTGCGCTCTAGTAAACGAGGTAAAATAGCGAAC
8283	GTTCGCTATTTTACCTCGTTTACTAGAGCGCACAGGTGCAAACGAGCATGGAACC
8284	GGTCGACTCTAGAGGATCCCCGATACCAGCAGCCCAAAGAACAATC
8285	CAGTGAATTCGAGCTCGGTACCCGATCGCTGTCAGTTTCATTATGCTC
8286	CTGGTCAATTTCCACTTGATCATATAATGCCCGGGCAAGCGGTCTGTTTTCTACC
8287	GGTAGAAAACAGACCGCTTGCCCGGGCATTATATGATCAAGTGGAAATTGACCAG
8288	GGTCGACTCTAGAGGATCCCCCTTCCTCAAGAATCTCATCCACTTC
8289	CAGTGAATTCGAGCTCGGTACCCGTCAGTGTGAAATCAGCCGAGG
8290	GCTCCGCCTGAAAAAAGGCATTATAAAGAAGATTGAACCCGTTAAATCGCCTTC
8291	GAAGGCGATTTAACGGGTTCAATCTTCTTTATAATGCCTTTTTTCAGGCGGAGC
8292	GGTCGACTCTAGAGGATCCCCCAGCCAATCTTCTTTACGAAGCC
8397	GGTTCCATGCTCGTTTGCACCTGTGCGCTCTAGTAAACGAGGTAAAATAGCAAAG
8398	CTTTGCTATTTTACCTCGTTTACTAGAGCGCACAGGTGCAAACGAGCATGGAACC

SUPPLEMATAL FIGURE LEGENDS

Figure S1: YgzD represses expression of *P_{ygzD}***. A)** ChIP-Seq performed using α-SinR that also cross reacts with SIrR. For each sample, sequencing reads were normalized to the total number of reads. Number of normalized sequencings reads from samples treated with α-SinR was divided by the normalized reads for the corresponding untreated samples to determine fold enrichment (ChIP/Input). ChIP/input (Y-axis) was plotted in 1kb bins against genome position in kilobases (X-axis). Each strain used in this figure had *epsH* deleted to avoid cell-clumping sure to absence of SinR. The genotype of the strain used to generate each panel is indicated in the top right corner. The following strains were used: top panel, *sinR slrR* (DK9314), bottom panel *sinR slrR ygzD* (DB225). **B)** Enlarged data from panel A. The ChIP/input (Y-axis) was plotted in 10bp bins over a 4kb range. Ticks on the X-axis represent 1kb intervals. An overlay of the enrichment profile of *sinR slrR* (red) and *sinR slrR ygzD* (blue) is displayed at the desired locations. The gene of interest (highlighted in orange) and the neighboring genome architecture is cartooned below each vertical panel. **C**) β-galactosidase activity of *P_{ygzD}-lacZ* in Miller units (MU) plotted on the Y-axis in linear

scale. Each experiment is the average of three replicates and error bars indicate standard deviation. The genetic background in which each reported was tested is indicated on the X-axis. Each strain used in this panel was mutated for *epsE* to avoid clumping of cells in the absence of SinR and thus an *epsE* mutant was considered as "*wt*" for this experiment. The following strains were used to generate this panel, "*wt*" (DB995), *sinR* (DB996), *sinR slrR* (DB997), and *sinR slrR ygzD* (DB998). Raw data are presented in **Table S6**.

Figure S2: Predicted structures of SinR, SIrR and YgzD homodimers and SinR-SIrR heterodimer. A) Structures predicted by Alphafold2. In each case, DNA binding domain are shaded in a darker color. B) Alignment of SinR, SIrR and YgzD amino acid sequence. Residues over 50% identity are shaded in purple.

FigS3: SinR-SIrR heteromer binding sites do not indicate internal promoters within the *fla/che* operon. Cells containing transcription reporters in which 500 bp surrounding the four SinR-SIrR peaks, *site1*, *site23*, *site4* and *site5* within the *fla/che* operon were transcriptionally fused to *lacZ* and integrated at an ectopic site were inoculated on LB plates supplemented with 80 µg/ml of the chromogenic substrate X-gal. As controls, cells containing the *P*_{flache} and *P*_{hag} promoters transcriptionally fused to *lacZ* were plated on the same media. The following strains were used to generate this figure, *P*_{flache}-*lacZ* (DB643), *P*_{hag}-*lacZ* (DB402), *site1-lacZ* (DB143), *site23-lacZ* (DB144), *site4-lacZ* (DB145) and *site5-lacZ* (DB146).

Figure S4: Mutation of multiple SinR•SIrR binding sites within the *fla/che* operon restores **swarming motility to cells expressing multiple copies of** *slrA***. A)** The sequence of each of the five SinR•SIrR putative binding sites within the *fla/che* operon and the mutations generated at

each of the sites (site*, highlighted in pink). Pink lines on the top indicate the putative SinRbinding half-site (with consensus indicated). **B)** Quantitative swarm assay for strains mutated for single and multiple SinR•SIrR binding sites as indicated on each panel. Each strain used in this assay was mutated for EpsE to exclude the effect of the the EpsE bifunctional flagellar clutch/EPS glycosyltransferase in the absence of SinR, and an *epsE* mutant was considered "*wt*" for this experiment. Binding sites were mutated and tested in "*wt*" (gray circles) and (*slrA*⁺) (black circles) genetic backgrounds respectively. The following strains were used to generate this panel. "*wt*" (DK9699, DB154), *site1** (DB1360, DB1438), *site2** (DB1419, DB1439), *site3** (DB1420, DB1440), *site4** (DB1357, DB1436), *site5** (DB1358, DB1437), *site(12)** (DB1515, DB1522), *site(123)** (DB1598, DB1609), *site(1234)** (DB1667, DB1669) and *site(12345)** (DB1702, DB1705). Each data point is the average of three replicas.

Figure S5: Mutation of SinR-SIrR sites 1 and 2 simultaneously restore *P*_{hag}-*lacZ* **expression to** *slrA*⁺. β-galactosidase activity of *P*_{hag}-*lacZ* in Miller units (MU) plotted on the Y-axis in linear scale. Each experiment was performed in three replicates and error bars indicate standard deviation of the three replicates. The genetic background of strains used in this experiment is indicated on the X-axis. A line is drawn below all strains that contain an extra copy of *slrA* (*slrA*⁺). Ø indicates that no additional mutation was added and each site mutation is indicated by a number, or sequence of numbers, followed by an asterisk. Each strain used in this panel was mutated for *epsE* to avoid clumping of cells in the absence of SinR. Therefore, an *epsE* mutant was considered as "*wt*" for this experiment. The following strains were used to generate this panel, "*wt*" (DB402), (*slrA*⁺) (DB1662), *slrR* (*slrA*⁺) (DB1785), *site1** (*slrA*⁺) (DB1786), *site(123)** (*slrA*⁺) (DB1681), *site(1234)** (*slrA*⁺) (DB1737) and *site(12345)** (*slrA*⁺) (DB1709). Raw data are presented in **Table S7**.

Figure S6: Mutation of *sites1-4* abolished SinR-SIrR enrichment *in vivo* while mutation of *site5* did not. A) ChIP-Seq performed using α -SinR that also cross reacts with SIrR. For each sample, sequencing reads were normalized to the total number of reads. Number of normalized sequencings reads from samples treated with α -SinR was divided by the normalized reads for the corresponding untreated samples to determine fold enrichment (ChIP/Input). ChIP/input (Y-axis) was plotted in 1 kb bins against genome position in kilobases (X-axis). The genotype of the strain used to generate each panel is mentioned in the top right corner. The following strains were used to generate each panel. Top panel *slrA*⁺ (DB154, red), bottom panel *site(12345)*^{*} (*slrA*⁺) (DB1705, blue). B) Data are analyzed in the same way as in panel A. The ChIP/input (Y-axs) was plotted in 10 bp bins over a 4 kb range. Ticks on the X-axis represent 1 kb intervals. An overlay of the enrichment profile of (*slrA*⁺) (red) and *site(12345)*^{*} (*slrA*⁺) (blue) is displayed at the each of the SinR•SIrR sites within *fla/che* and a control SinR•SIrR site *lytA*. The genome architecture of the location depicted is cartooned below each vertical panel and the gene of interest is highlighted in orange.

Figure S7: Mutation of sites 1 and 2 in (*slrA*⁺) restores transcript level of several genes within the SigD regulon, but not *lytA*. Data were analyzed in the same way as Fig 7. Percentage transcript per million (TPM) normalized to *sigA* TPM was calculated for each transcript in a variety of genetic background and the average of two replicates is plotted in the Y-axis in log_2 scale. The dots in each panel represent percent TPM the values of each replicate. The name of the gene corresponding to each panel is mentioned on top on the panel. X-axis represents the different genotypes in which TPM was determined: A) "*wt*" (DK9699); B) (*slrA*⁺) (DB154); C) *slrR* (*slrA*⁺) (DB141); D) *site1**(*slrA*⁺) (DB1438); and E) *site(12)** (*slrA*⁺) (DB1522). Raw data are presented in Table S10.

SUPPLEMENTAL REFERENCES

- 1. Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB. 2008. A molecular clutch disables flagella in the *Bacillus subtilis* biofilm. Science **320**:1636-1638.
- 2. Chu F, Kearns DB, McLoon A, Chai Y, Kolter R, Losick R. 2008. A novel regulatory protein governing biofilm formation in *Bacillus subtilis*. Mol Microbiol **68**:1117-1127.
- 3. Chu F, Kearns DB, Branda SS, Kolter, R, Losick R. 2006. Targets of the master regulator of biofilm formation in *Bacillus subtilis*. Mol Microbiol **59**:1216-1228.
- 4. Kearns DB, Chu F, Branda SS, Kolter R, Losick R. 2005. A master regulator for biofilm formation by *Bacillus subtilis*. Mol Microbiol **55**:739-749.
- 5. Chai Y, Norman T, Kolter R, Losick R. 2010. An epigenetic switch governing daughter cell separation in *Bacillus subtilis*. Genes Dev **24**:754-765.
- 6. Cozy LM, Phillips AM, Calvo RA, Bate AR, Hsueh Y-H, Bonneau R, Eichenberger P, Kearns DB. 2012. SIrA/SinR/SIrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ^{D} in *Bacillus subtilis*. Mol Microbiol 83:1210-1228.
- **7.** Antoniewski C, Savelli B, and P. Stragier. 1990. The spollJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:86-93.
- Sullivan NL, Marquis KA, Rudner DZ. 2009. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. 137(4):697-707.
- **9.** Guérout-Fleury AM, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene. 180(1-2):57-61.

В	YgzD SinR SlrR	1 -MKNKVKELRARFGYSQEKLGETVGVTRQTVAAIEKGDYV-PSLLLALKICKAFSMKMEDVFWLEEEN
	YgzD SinR SlrR	96 REFLDYQKWRKSQKEE 97 FTFTNRLKKEQPETASYRNRKLTESNIEEWKALMAEAREIGLSVHEVKSFLKTKGR

site3*

