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Using Chromosome Conformation Capture Combined
with Deep Sequencing (Hi-C) to Study Genome Organization
in Bacteria

Qin Liao and Xindan Wang

Abstract

Genome organization is fundamental to all living organisms. Long DNA molecules are organized in
hierarchical orders to be accommodated into eukaryotic nuclei or bacterial cells, which are thousands of
folds shorter. Over the past two decades, chromosome conformation capture (3C) techniques substantially
advanced our understanding of genome folding inside cells. 3C involves crosslinking and proximity
ligation, and quantifies the physical contacts between two DNA regions within the genome. Coupled
with high-throughput sequencing, 3C-seq and Hi-C techniques detect genome-wide DNA interactions,
providing a comprehensive view of global genome organization. Here, we describe a detailed method to
prepare Hi-C libraries using Bacillus subtilis, which includes procedures of crosslinking chromatin, digest-
ing the crosslinked genome, labeling DNA ends with biotin, ligating DNA, and preparing the DNA library
for sequencing using an Illumina platform.
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1 Introduction

Genome organization plays critical roles in the regulation of gene
expression and genome stability. Microscopy-based techniques
have documented many architectural features of genomes, such as
nucleus compartmentalization, chromatin fibers, and subnuclear
positions of various chromosomal loci [1–3]. Complementary
methods involving chromosome conformation capture
(3C) assays have extend our understanding of genome organization
[4]. Through chromatin crosslinking, genome digestion,
re-ligation, and quantification of ligation frequency, 3C-based
methods measure spatial proximity between DNA sequences and
provide an understanding of the organization of a genome.
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While the original 3C method [5] only quantified the contact
between two specific regions, when combined with deep sequenc-
ing, 3C-based methods can be used to measure the frequency of
genome-wide DNA interactions at high resolution. These methods
enable the reconstitution of three-dimensional architecture of an
entire genome. While deep sequencing can be costly, one method
called Hi-C [6] reduces the cost by enriching the ligation products
before sequencing. Essentially, Hi-C involves the following steps:
DNA fragments in proximity are covalently crosslinked, usually by
formaldehyde, to preserve the DNA interactions; after cell lysis, the
crosslinked chromatin is digested using restriction enzymes (either
4-bp or 6-bp cutters) to generate 50 overhangs; protruding ends of
the digestion products are filled with biotinylated nucleotides by
the Klenow fragment; the blunt ends are ligated using T4 ligase;
after the reversal of crosslinking, DNA is further fragmented by
sonication; then the biotinylated fragments are enriched by strep-
tavidin pull-down; and finally, the DNA is prepared for paired-end
deep sequencing (Fig. 1).

Hi-C studies have greatly advanced our understanding of
genome organization across all domains of life. At the local level,
genomes are folded into small domains known as topologically
associating domains in eukaryotes [7] and chromosomal interac-
tion domains in bacteria [8, 9]. At a higher level, eukaryotic chro-
mosomes are organized in compartments while many bacteria have
juxtaposed chromosome arms [6, 8, 10–13]. Furthermore, both
eukaryotes and bacteria with multipartite genomes exhibited a
plethora of inter-chromosomal interactions [14–17]. We believe
that more secrets of genome biology await Hi-C to uncover. In
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Fig. 1 Overview of the Hi-C experiment. Cells are crosslinked with formaldehyde to maintain protein–DNA and
DNA–DNA interactions. After cell lysis, the chromatin is subjected to digestion with a restriction enzyme,
resulting in 50 overhangs which are subsequently filled in with biotinylated nucleotides. Blunt ends are ligated
using T4 ligase. After the reversal of crosslinking and protein removal, DNA is purified and further fragmented
by sonication. To prepare the DNA library for sequencing, necessary adaptors are ligated to the ends of
sheared DNA. Biotinylated junctions are pulled down with streptavidin beads. Finally, the DNA products are
amplified by PCR and analyzed by paired-end sequencing. Steps (3.1–3.11) in the Methods section are
indicated above the schematics

232 Qin Liao and Xindan Wang



this chapter, we describe a detailed protocol to prepare a Hi-C
library from Bacillus subtilis. The method can be adapted to other
bacterial species.

2 Materials

2.1 Cell Culture
Collection and Fixation

1. Defined rich casein hydrolysate (CH) medium [18].

2. 250 mL 3XD BAF Shake Flask.

3. Waterbath.

4. 50 mL Polypropylene conical centrifuge tube.

5. 15 mL Polypropylene conical centrifuge tube.

6. 37% formaldehyde (see Note 1).

7. Rocker.

8. 2.5 M glycine.

9. 1! Phosphate-buffered saline (PBS): dissolve 8 g of NaCl,
0.2 g of KCL, 1.44 g of Na2HPO4, 0.24 g of KH2PO4 in 1 L
of ddH2O. Adjust pH to 7.4 with NaOH. Sterilize by
autoclaving.

10. 1.5 mL Eppendorf DNA LoBind microcentrifuge safe-
lock tube.

2.2 Cell Lysis,
Genome Digestion,
Biotin Labeling and
Ligation

1. 1! TE buffer: 10 mM Tris, 1 mM EDTA in ddH2O. Adjust
pH to 8.0. Autoclaved.

2. Proteinase inhibitor cocktail.

3. Lysozyme, recommended Ready Lyse (VWR).

4. 10% sodium dodecyl sulfate (SDS).

5. Nuclease-free H2O.

6. HindIII enzyme.

7. NEB buffer 2.1 (supplied with HindIII).

8. 10% Triton-X.

9. Nuclease-free PCR tubes.

10. 2 mM dGTP.

11. 2 mM dTTP.

12. 2 mM dCTP.

13. 1 mM Biotin-14-dATP (Axxora).

14. DNA Polymerase I, Large (Klenow) Fragment.

15. Thermocycler.

16. 2 mL Eppendorf DNA LoBind safe-lock tube.

17. T4 DNA ligase.
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18. T4 DNA ligase reaction buffer.

19. 20 mg/mL Recombinant Albumin (rAlbumin, New England
Biolabs).

20. 100 mM ATP.

2.3 Reverse
Crosslinking

1. 0.5 M EDTA, pH 8.0.

2. Proteinase K.

2.4 DNA Extraction
and RNA Digestion

1. Phenol/Chloroform/Isoamyl Alcohol (PCI, 25:24:1
mixture).

2. 1.7 mL microcentrifuge polypropylene tubes.

3. 3 M NaOAc: dissolve 246.1 g of NaC2H3O2 in 800 mL of
ddH2O. Adjust pH to 5.2 with glacial acetic acid and increase
volume to 1 L with ddH2O. Sterilize by autoclaving.

4. 20 mg/mL glycogen.

5. Vortex mixer.

6. 100% ethanol.

7. Vacuum Aspirator.

8. 70% Ethanol.

9. QIAGEN elution buffer (EB).

10. RNaseA.

2.5 Removal of Biotin
from Non-ligated
Ends

1. 2 mM dATP.

2. T4 DNA polymerase.

2.6 DNA Sonication 1. 0.5 mL sonication tube (BrandTech).

2. Qsonica Q800R2 sonicator (Qsonica).

3. 2.2% agarose gel.

2.7 Cleanup of
Fragmented DNA

1. AMPure XP beads (Beckman).

2. 1.5 mL low adhesion microcentrifuge tubes.

3. Magnetic stand.

4. 80% Ethanol.

5. 0.1! TE.

2.8 DNA Library
Preparation for
Illumina

1. NEBNext Ultra II DNA Library Prep Kit for Illumina (New
England Biolabs).

2. Tris/NaCl (10 mM Tris-HCl pH 8.0, 10 mM NaCl).

3. NEBNext Multiplex Oligos for Illumina (New England
Biolabs).

4. USER enzyme (New England Biolabs).
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5. 2! NTB buffer: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA and
2 M NaCl in ddH2O.

6. 1! NTB buffer.

7. Dynabeads MyOne Streptavidin C1 beads (Fisher Scientific).

8. Qubit dsDNA HS assay kit (Fisher Scientific).

9. Qubit Assay Tubes (Fisher Scientific).

10. Qubit Fluorometers (Fisher Scientific).

3 Methods

3.1 Cell Culture
Collection and Fixation

1. Inoculate cells in 5 mL of CHmedium at 22 "C overnight with
aeration.

2. The next morning, in a 250 mL flask, set up a subculture of
30 mL by diluting the overnight culture in fresh CH medium
to an optical density at 600 nM (OD600) of 0.02.

3. Put the flask in a 37 "C shaking waterbath. Grow cells to mid-
exponential-growth phase, to an OD600 of ~0.3 (see Note 2).

4. Transfer 20 mL of the cells to a 50 mL conical centrifuge tube
containing 1.8 mL of 37% formaldehyde (3% final concentra-
tion). Incubate at room temperature (RT) for 30 min with
gentle mixing on a rocker (see Note 3).

5. Add 1 mL of 2.5 M glycine (125 mM final concentration).
Incubate at RT for 5 min with gentle mixing on a rocker.

6. Pellet cells by centrifugation at 12,000 ! g for 10 min at 4 "C.
Remove the supernatant.

7. Wash cells by resuspending the pellet using 10 mL of ice-cold
1! PBS. Transfer into a 15 mL conical tube. Centrifuge cells
again at 12,000 ! g for 10 min at 4 "C. Remove the
supernatant.

8. Resuspend the pellet in 500 μL of ice-cold 1! PBS.

9. Make a 1:40 dilution (25 μL resuspension in 975 μL of PBS)
and measure its OD600. Save aliquots of 1 OD unit of cells
(~5 ! 108 cells) in 1.5 mL tubes.

10. Freeze cells using liquid nitrogen and store at #80 "C.

3.2 Cell Lysis,
Genome Digestion,
Biotin Labeling and
Ligation

1. Thaw the frozen cells on ice.

2. Centrifuge cells at 21,000 ! g for 3 min at 4 "C. Carefully
remove the supernatant (see Note 4).

3. Resuspend the cell pellet in 50 μL of lysis buffer (50 μL of
TE + 0.5 μL of proteinase inhibitor cocktail +3 μL of lysozyme)
and incubate at RT for 60 min. Pipette the lysate to mix.
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4. Add 5 μL of 10% SDS (1% final concentration) and incubate at
RT for 30 min (see Note 5).

5. Transfer 12 μL of the cell lysate into digestion buffer (84 μL of
nuclease-free H2O, 12 μL of NEB buffer 2.1, and 12 μL of 10%
triton-X). Mix the reaction well and incubate at RT for 10 min.

6. Add 6 μL of HindIII into the mixture, and incubate at 37 "C
for 2 h.

7. Once digestion is finished, cool the reaction down on ice for
5 min (see Note 6).

8. To label the overhangs of the digested fragments with biotin, in
a PCR tube, set up a 120 μL of reaction by mixing the follow-
ing components: 1.8 μL of 2 mM dGTP, 1.8 μL of 2 mM
dTTP, 1.8 μL of 2 mM dCTP, 3.6 μL of 1 mM Biotin-14-
dATP, 2.4 μL of DNA Polymerase I, Large (Klenow) Frag-
ment, 11 μL of cold nuclease-free H2O, and 100 μL of cooled
digestion product. Pipette to mix thoroughly.

9. Incubate the reaction at 25 "C for 75 min in a thermocycler.

10. Stop the reaction by adding 6 μL of 10% SDS (0.5% final
concentration). Pipette to mix thoroughly. Incubate the reac-
tion at RT for 10 min.

11. Set up a ligation reaction in a 2 mL safe-lock tube on ice.
Prepare ligation mixture by mixing the following components:
623 μL of cold nuclease-free H2O, 80 μL of 10% Triton, 93 μL
of ligase buffer, 2.3 μL of 20 mg/mL rAlbumin, and 1.9 μL of
100 mM ATP.

12. Add all SDS-treated digestion products from Step 10 into the
mixture and incubate on ice for 10 min.

13. Add 6 μL of T4 DNA ligase into the mixture and invert to mix.

14. Incubate the tube at 16 "C overnight (see Note 7).

3.3 Reverse
Crosslinking

1. After the overnight ligation, add 20 μL of 0.5 M EDTA to
inactivate the enzymes (~10 mM final concentration) and
invert the tube to mix.

2. Add 10 μL proteinase K and invert the tube to mix.

3. Add 20 μL of 10% SDS and invert the tube to mix.

4. Incubate the sample at 65 "C overnight (see Note 8).

3.4 DNA Extraction
and RNA Digestion

1. After overnight incubation, add 1 mL of PCI to the 2 mL tube.
Vortex vigorously for 30 s. Then, centrifuge at 21,000 ! g for
5 min at RT.

2. Carefully transfer the aqueous phase to a new 2 mL tube. Add
1 mL of PCI and repeat vortex and centrifugation as in Step 1.
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3. Transfer the aqueous phase to a 1.7 mL microcentrifuge tube
(see Note 9).

4. Add 2 μL of glycogen and vortex vigorously for 10 s. Then, add
200 μL of 3 M NaOAc and vortex vigorously for 10 s.

5. Split the mixture in half by transferring ~550 μL of the mixture
to 1.7 mL microcentrifuge tubes.

6. Add 1.1 mL of ice-cold 100% EtOH and vortex vigorously for
10 s.

7. Incubate at #80 "C for 1 h.

8. Pellet DNA by centrifugation at 21,000! g for 30 min at 4 "C.
Carefully remove the supernatant by aspiration.

9. Add 1 mL of freshly prepared 70% ethanol (EtOH) to each
tube. Vortex vigorously for 10 s.

10. Centrifuge at 21,000 ! g for 30 min at 4 "C. Carefully remove
the supernatant by aspiration.

11. Air-dry pellets for 3 min.

12. Add 20 μL of EB buffer.

13. Pipette to resuspend. Then, combine the two tubes of the same
sample into one tube.

14. Add 2 μL of RNase A and then incubate at 65 "C for 30 min.

15. Cool down the sample on ice for 5 min before setting up the
following reaction.

3.5 Removal of
Biotins from Non-
ligated Ends

1. Set up the reaction in a PCR tube on ice by adding 10.3 μL of
nuclease-free H2O, 6.4 μL of NEBuffer 2.1, 1.6 μL of 2 mM
dATP, 1.6 μL T4 DNA polymerase, and all purified DNA.

2. Mix by pipetting followed by a pulse spin to collect all liquid
from the side of the tube. Incubate at 20 "C for 4 h in a
thermocycler.

3.6 DNA Extraction 1. Transfer the reaction to a 1.7 mL microcentrifuge tube.

2. Add 200 μL of PCI and vortex vigorously for 10 s to inactivate
enzymes.

3. Add 150 μL of nuclease-free H2O to bring up the volume.
Vortex vigorously for 30 s.

4. Centrifuge at 21,000 ! g for 5 min.

5. Carefully transfer aqueous phase to a new 1.7 mL microcen-
trifuge tube (see Note 9).

6. Add 1 μL of glycogen and vortex vigorously for 10 s. Then, add
40 μL of 3 M NaOAc and vortex vigorously for 10 s.

7. Add 1 mL of ice-cold 100% EtOH and vortex vigorously for
10 s.
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8. Incubate at #80 "C for 45 min.

9. Pellet the DNA by centrifugation at 21,000 ! g for 30 min at
4 "C. Carefully remove the supernatant by aspiration.

10. Add 1 mL of freshly prepared 70% EtOH to the tube. Vortex
vigorously for 10 s.

11. Centrifuge at 21,000 ! g for 10 min at 4 "C. Carefully remove
the supernatant by aspiration.

12. Air-dry the pellet for 3 min. Avoid over-drying.

13. To resuspend DNA, add 105 μL of nuclease-free H2O. Pipette
to mix.

3.7 DNA Sonication 1. Transfer all DNA into a 0.5 mL sonication tube. Cool down
the sample on ice for 5 min.

2. Using Qsonica Q800R2 sonicator, sonicate for 6 min without
pause at 20% amplitude (see Note 10).

3. Vortex and quickly spin the tube, and then repeat sonication
one more time using the same conditions.

4. Check the sample by DNA electrophoresis using 2.2% agarose
gel. A DNA smear below 1 kb is desired. Sonicate more if
needed.

3.8 Cleanup PF
Fragmented DNA

1. Warm AMPure XP beads up to RT for at least 30 min.

2. Transfer the fragmented DNA into a 1.5 mL low adhesion
microcentrifuge tube.

3. Vortex the AMPure XP beads to resuspend. Add 160 μL of
AMPure XP beads to the DNA, mix well, and incubate for
5 min at RT (see Note 11).

4. Quickly spin the tube and place it on an appropriate magnetic
stand to separate the beads from the supernatant. After the
solution is clear (about 5 min), carefully remove and discard the
supernatant (see Note 12).

5. Add 200 μL of freshly prepared 80% ethanol to the tube while
in the magnetic stand. Incubate at RT for 30 s, and then
carefully remove and discard the supernatant.

6. Repeat Step 5 for a total of 2 washes.

7. Air-dry beads for 5 min while the tube is on the magnetic stand
with the lid open (see Note 13).

8. Elute the DNA target from the beads into 53 μL of 0.1!
TE. Mix well on a vortex mixer or by pipetting up and down.
Let sit at RT for 5 min, and then vortex and quickly spin
the tube.

9. Place the tube back on a magnetic stand. After the solution is
clear (about 5 min), transfer 50 μL to a PCR tube and leave the
tube on ice (see Note 14).
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3.9 DNA Library
Preparation for
Illumina Sequencing

3.9.1 NEBNext End Prep

1. Add 3 μL of NEBNext Ultra II End Prep Enzyme Mix and
7 μL of 10! NEBNext Ultra II End Repair Reaction Buffer
into the above PCR tube containing 50 μL of purified
fragmented DNA.

2. Mix by pipetting followed by a pulse spin to collect all liquid
from the side of the tube.

3. Place the PCR tube in a thermocycler. Run the following
program:

• 30 min at 20 "C.

• 30 min at 65 "C.

• Hold at 4 "C.

3.9.2 Adaptor Ligation 1. Dilute 15 μL of adaptors using 60 μL of a Tris/NaCl solution
to achieve 75 μL of a 1:5 dilution of adaptors (see Note 15).

2. Add 2.5 μL of diluted adaptors directly to the End Prep reac-
tion mixture from Subheading 3.9.1, Step 3 and pipette to mix
thoroughly (see Note 16).

3. Add 1 μL of NEBNext Ultra II Ligation Enhancer and 30 μL of
NEBNext Ultra II Ligation Master Mix into the reaction mix-
ture. Mix by pipetting followed by a pulse spin to collect all
liquid from the side of the tube.

4. Incubate at 20 "C for 15 min in a thermocycler.

5. Add 3 μL of USER enzyme to the ligation mixture.

6. Pipette to mix thoroughly and incubate at 37 "C for 30min in a
thermocycler. Put the tube on ice when done.

7. Cleanup the DNA using 87 μL well-resuspended AMPure XP
beads for each reaction, following the same procedure as
described in Subheading 3.8. Elute the DNA from the beads
into 28 μL of 0.1! TE. Use 25 μL of the DNA for the
next step.

3.10 Biotin Pull-
Down

1. Vortex streptavidin beads in the vial for 30 s to mix. Transfer
5 μL of beads into a 1.5 mL low adhesion microcentrifuge tube
(see Note 17).

2. Add 400 μL of 1!NTB buffer to the beads and pipette to mix.
Transfer the resuspension to a new 1.5 mL low adhesion
microcentrifuge tube.

3. Place the tube on an appropriate magnetic stand for 3 min to
isolate the beads. Carefully remove and discard the
supernatant.

4. Repeat Steps 2 and 3 two more times for a total of 3 washes.

5. Resuspend the beads in 25 μL of 2! NTB buffer per 5 μL of
beads used in Step 1 and transfer to a 1.5 mL low adhesion
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microcentrifuge tube (seeNote 18). Place the tube on ice while
preparing DNA.

6. Transfer 25 μL of DNA from Subheading 3.9.2, Step 7 into
the above tube containing streptavidin beads, mix well.

7. Incubate the tube at RT for 30 min with gentle agitation on a
vortexer.

8. Place the tube on a magnetic stand for 3 min to isolate the
beads. Remove and discard the supernatant.

9. Add 400 μL of 1!NTB buffer to resuspend the beads, transfer
the resuspension to a new 1.5 mL low adhesion microcentri-
fuge tube, and agitate for 3 min.

10. Repeat Steps 8 and 9 for a total of 2 washes.

11. Add 400 μL of nuclease-free H2O to resuspend the beads and
transfer to a new 1.5 mL low adhesion microcentrifuge tube.

12. Place the tube on a magnetic stand for 3 min to isolate the
beads. Remove and discard the supernatant.

13. Add 100 μL of nuclease-free H2O to resuspend the beads and
transfer to a new 1.5 mL low adhesion microcentrifuge tube.

14. Place the tube on a magnetic stand for 3 min to isolate the
beads. Remove and discard the supernatant.

15. Add 21 μL of nuclease-free H2O to resuspend the beads.
Transfer the beads to a PCR tube and place on ice.

3.11 PCR
Amplification

1. Mix the following components in a PCR tube: 25 μL of NEB-
Next Ultra II 2! Q5 Master Mix, 4 μL of Index Primers Mix,
and 21 μL of streptavidin beads.

2. Pipette to mix thoroughly.

3. Place the tube in a thermocycler and set up conditions as in
Table 1.

Table 1
PCR cycling conditions

Step Temperature Time Cycles

Initial denaturation 98 "C 30 s N/A

Denaturation 98 "C 10 s

Annealing & Extension 65 "C 1 min and 15 s 14 cycles

Final extension 65 "C 5 min N/A

Hold 4 "C 1 N/A
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4. Quick spin the PCR tube to pellet beads. Desired DNA are in
the supernatant.

5. Check the PCR product by DNA electrophoresis using a 2.2%
gel. Expect to see a smear below 500 bp.

6. Transfer 45 μL of the PCR reaction to a 1.5 mL low adhesion
microcentrifuge tube. Avoid taking the streptavidin beads.

7. Clean up the DNA using 45 μL of well-resuspended AMPure
XP beads for each reaction as described previously in Subhead-
ing 3.8. Elute the DNA from the beads into 33 μL of 0.1!
TE. Then, transfer 30 μL to a clean 1.5 mL tube.

8. Determine DNA concentration. Qubit dsDNA HS assay kit is
recommended for accurate measurement.

9. Submit the DNA samples to a sequencing facility for paired-
end sequencing.

4 Notes

1. Use formaldehyde within 6 months after opening to minimize
oxidation.

2. Collect the cells in your desired growth phase. For most stud-
ies, exponential growth might be desired.

3. If cells are grown at a lower temperature such as 30 "C, increase
crosslinking time to 45 min.

4. It is important to remove all of the supernatant. Repeat centri-
fugation if necessary.

5. Because of the presence of SDS, bubbles easily form during
pipetting. Try to minimize it by pipetting slowly.

6. It is important to cool the reaction down before setting up the
biotin labeling reaction.

7. During the incubation at 16 "C, invert the tube multiple times.
We recommend a ligation time over 15 h.

8. Incubate the sample at 65 "C for more than 17 h.

9. Use cut tips to avoid pulling the organic phase.

10. Perform the sonication at 4 "C.

11. Beads can be mixed either by pipetting up and down 10 times
or by vortexing for a few seconds.

12. Be careful not to disturb the beads which contain the
desired DNA.

13. Over-drying the beads may result in low recovery of DNA.

14. Cool down the DNA on ice before adding the enzyme mix and
the buffer in the following step.
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15. As DNA input is low, the manufacturer recommends that the
NEBNext adaptor for Illumina be diluted 1:5 before using.

16. Mix adaptors with the End Prep reaction mixture before add-
ing ligation enhancer and ligation mix. This action will avoid
self-ligation of adaptors.

17. If you have more than one reaction, process all the beads in the
same tube.

18. If you have more than one reaction, resuspend beads with
2! NTB buffer accordingly and then distribute 25 μL of
resuspension to individual 1.5 mL low adhesion microcentri-
fuge tubes.
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